APPENDIX A

PRIOR FIELD INVESTIGATION DATA

Appendix A Contents

- A.1 NUS 1985 and EBASCO 1988 Aberjona Auto Parts Soil and Groundwater Data Summary Tables
- A.2 Data Summary Tables and Figure Excerpts –

 RETEC 1994 Draft Remedial Investigation –

 Southwest Properties
- A.3 GHR 1988 Whitney Barrel Soil and Groundwater

 Data Summary Table Excerpts
- A.4 Clean Harbors Table and Figure Excerpts for the
 Murphy Property and Short Term Measure Soil
 Characterization Data

Appendix A.1

NUS 1985 and EBASCO 1988 Aberjona Auto Parts Soil and Groundwater Data Summary Tables

Table 2-8 Aberjona Anto Parts Soil Analytical Results

Corspound	AB-1-01 0-7	AB-1-@ ~~4"	AB-1+03 4'-6'	AB-1-04
Volatile Ormaic Compounds (mg/k)	<u>. </u>			
1.1.1 - Trichlorosthens	NA.	NA NA	NA NA	NA NA
1.1 - Dichlorosthane 1.2 - Dichlorosthane	NA NA	NA NA	NA.	NA NA
2 - Butanone	11 22		0.011 J	
4-Methyl-2-Pentanone	NA.	NA	NA.	NA
Acetone	0.006 J	0.006	.13 J , NA	NΑ
Benzene	NA NA	NA NA	NA.	NA NA
Carbou Disulfide Chlorobenzene	SA	NA.	NA	NA
Chlorosthane	NA.	NA	NA	NA
Chlorofons	11		NA.	. 4
Ethylbenzene	NA .	NA 		NA J
Methylene Chloride Tetrachloroethane	NA.	NA	NA	NA
Tetrachloroethere	NA NA	NA	NA	NA
Toluene	0.009		0.023	
Total Xylenes	NA NA	NA.	NA.	NA
Trichloroethene Vinyi Chloride	II ÑÃ.	NA.	NA	NA.
Sase Neutrals Compounds (mg/kg) 124-Trichlorobenzene	NA NA	NA	NA	NA
1.2 - Dichlorobenzene	NA NA	NA	NA	
1.3 - Dichlorobensene	NA.	NA	NA	NA
1.4—Dichlorobenzene	NA.	NA NA	NA Na	NA ~-
2—Afethyhaphthalene	NA NA	NA NA	NA NA	NA.
Acmaphtheue Acmaphthylme	II NA	NA NA	NA NA	NA.
Anthracene	NA.	NA	NA	NA
Benzo(A)Aishracme	NA NA	NA	NA	NA
Benzo(A)Pyrene	NA NA	NA	NA NA	NA NA
Beszo(B)Fluoranthene Beszo(CHI)Perylene	NA NA	NA NA	NA.	NA.
Benzo(X)Fluorambene	II SA	NA	NA	NA
Benzyl Alcohol	NA NA	N'A	NA	ÑΑ
Benzyl Butyl Phthalate	NA.	NA	NA	NA
Bis – (2 – Ethylhed) Phthabte	NA NA	NA NA	NA NA	NA.
Butylbenzylphthlate Chrysene	NA SA	NA NA	NA.	NA.
Dibenzofuran	NA NA	NA	NA	NA
Dibmzo(AII)Anthracene	NA.	NA	NA	NA
Diethyl Plathalate	NA	NA	NA NA	NA NA
Di – N – Butyl Fisthabte Di – N – Octyl Pisthabte	NA NA	NA NA	SA.	NA.
Fluoranthene	NA	NA	NA	NA
Fluorese	NA.	NA.	NA.	NA
liideiio(1.23-CD)Pyrme	NA.	NA	NA.	N۸
Napihalese Miesianthrese	NA NA	NA NA	NA NA	NA NA
Pyrene	NA NA	NA	NA_	
<u>scid Compounds (mg/kg)</u> 24,5—Trichloropheuol (2)	NX.	NA	NA	NA
14 - Dimethylphenol	SA	NA	NA	NA
- Methylphenol	NA.	NA.	NA	NA
i – Methylphenol	NA SA	NA NA	NA NA	NA NA
fished		-34		
osticidos/PCBs (mg/kg) Chlordane	NA.	NA.	NA.	
_niordane *CB− 1042	NA.	NA	NA.	NA
CB-1254	NA	NA	NA	NA
PCB-1248	NA.	NΑ	NA	NA
CB-1360	<u></u>	NANA	NA	<u>N</u> A
organic Compounds (mg/kg)				j
Ahunguun	NA.	NA NA	NA NA	6.46
Ultinony Arsenic	II SA SA	NA NA	NA NA	7.7
Jariana Jariana	NA.	NA	NA	23
23denium	NA.	NA	NA	
aleinan	NA NA	NA	NA	2.57
Throwium Talak	NA NA	NA NA	NA NA	16 ≟.3
Colenia Copper	NA NA	NA NA	NA NA	9.2
copper ron	11 82	SA	NA.	19.1
ead	SA	NA	SA	29
laptesium	NA.	NA	NA	3.09
langamere	NA.	NA	NA NA	135
fercury	NA NA	NA NA	NA NA	13
Cickel Totassimu	NA NA	NA NA	SA SA	3,57
		NA.	NA	223
odima	III NA	. " (1)		

Note a

Note Anabard for

Eliminated Quantity

- C Brann Detectable Limit

R = Value Was Repreted

C = The result has been converted for the pretract of the binative in the blank

All composed hade been detailed at one time diving analysis of we district in the blank

All composed hade been detailed at one time diving analysis of we district in the blank

Source: Supplemental Remedial Liverings bon for Frankling Study of Welling 2.14 Stir., Woburn, MA; Elector Septions, 1985

TA

Table 2-9
Aberjona Auto Parts
Summary of Analytical Results of Ground Water Samples

	ABL-01	ABL-02	583	583	533	533	\$83	\$53
Compound	Ebasco	Ehrason	NUS/FIT	NUSFIT	NUSFIT	NUS/FIT	NUSAHT	Ebasco
· · · · · · · · · · · · · · · · · · ·	12-17-87	12-17-87	April 1985	April 1985	May 1985	June 1985	June 1935	11-5-57
/obstile Organic Compounds (ng/L)	12 B	110 B			R	R	R	
Acesone 1,1 — Dickloroetha se	11							
Tolucine		8.7						
1.1.1 - Trichloroe:hase								
Tetrachioroethese			- -		15	12	14	
Trichiorocibeae	il			1,400 J	470	440	470 .	69
1.2 - Dichloroe the se			NA.	NA	NA .	NA.	NA	7
1.1 - Dickloroethese								
Chloreform	11	6.3	R	R				
Methylese Chloride]]		R	R	R	R	R	
? - Buta sone	!!							
trans-1.2-Dichloroethene	NA NA	NA			110	93.	100	NA
1,1,2,2 - Tetrachlorocthane	NA.	NA			` 			NA
Велгеле	NA.	NA						
Ethylbe are ac	II NA	NA						
Viant Chloride	NA	NA						NA
Styreae	NA.	NA						NA
Total Xvienes		6 3						
emi – Volutile Organic Compounds (12/L)								
N-Nirosodipheaylamine	28 B	26 B	NA	NA	NA	NA	NA	NA
Bis(2-ethylbexyl) Phthalate	10 9		19		NA	NA	NA	NA
			NA	NA	NA.	NA	NA	NA.
	11					-14	***	***
Butylbenzylphthalate Di-a-Octyl Phthlate			NA 	NA 	NA NA	NA NA	NA NA	NA NA
Buryibe azyiphtha hite Di — a — Oend Philiblate esticides/PCRs (ap/L)			NA	NA				
Di – n – Buiyl Pathalate Buiylbe nzylphtha late Di – n – Oend Phthlate esticides/PCBs (np/L) Chlorodane			NA 	NA 	NA NA	NA	NA_	SA_
Burythe uzytphtha late Di - a - Oend Phthlate esticide s/PCBs (up/L) Chlorodone normanic Compounds (ug/L)			NA	NA	NA NA	NA NA	NA NA	NA NA
Burylbe azytphtha la te Di - a - Oend Phthlate esticides/PCBs (np/L) Chlorodone norganic Composeds (ng/L) Alumisum		11.600	710	740	NA NA	NA NA	NA NA	NA NA NA
Butythe uzytphtha hite Di - a - Oend Phihlate esticides/PCBs (up/L) Chlorodane aorganic Compounds (ug/L) Alumisum Antimony	10,400	11.600	710	740	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA
Butythe uzytphtha late Di - a - Octyl Phihlate exteride s/PCRs (up/L) Chlorodane norganic Compounds (ug/L) Autimony Assimony	10,400	11.600	710	740	NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA
Butythe uzytphtha late Di - a - Octyl Phihlate esticides/PCBs (up/L) Chlorodane sorganic Compounds (ug/L) Aluminum Aluminum Arse aic Barium	10,400 - 8,3 B 115 B	11.600 12.1 121 B	710 30	740 23	NA NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA NA
Butythe uzytphtha in te Di — a — Oend Phthiaue esticides/PCRs (up/L) Chlorodane sorganic Compounds (ug/L) Aluminum Antimony Arse aic Barium Berytium	10,400 8.3 B 115 B	11.600 12.1 121 B	710 30	740 23	NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA
Butythe uzylphtha hite Di - a - Oeryl Phihlate exticides/PCBs (up/L) Chlorodane norganic Compounds (ug/L) Alumisum Antimony Arse nic Jaritum Catenium	10,400 8.3 B 115 B	11.600 12.1 12.1 B	710 30 8	740 23	NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA	NA NA NA NA NA NA NA
Butytbe uzytphtha la te Di — a — Oend Phithlate extécide s/PCBs (up/L) Thlorodane sorganic Compounds (ug/L) Allumisum Antimony Arse aic Sarium Berytium Calcium	10,400 8.3 B 115 B 50,600	11.600 12.1 12.1 B	710 30 8 62,000	740 23 62,000	NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA
Butythe uzytphtha late Di - a - Octof Phihlate esticide s/PCRs (up/L) Chlorodane sorganic Compounds (ug/L) Alumisum Astimony Arse ase Barium Berythum Cadminum Calcium Chromium	10,400 8.3 B 115 B 50,600 25	11.600 12.1 12.1 B	710 30 8 62,000	740 23 62,000	NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA
Butythe uzytphtha in te Di — a — Oend Phthiate esticides/PCRs (up/L) Chlorodone sorganic Compounds (ug/L) Aluminum Antimony Arse aic Barium Berytium Caldinium Caldinium Coball	10,400 8.3 B 115 B 50,600 25	11.600 12.1 12.1 B 45,600 23	710 30 8 62,000	740 23 62,000 7.9	NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA
Butytbe uzytphtha late Di — a — Oend Phthlate esticides/PCBs (up/L) Chlorodane sorganic Compounds (ug/L) Aluminum Antimony Arse nic Bartium Bartium Calcium Chromium Cobalt Copper	10,400 8.3 B 115 B 50,600 25	11.600 12.1 12.1 B 45.600 23 22 B	710 30 8 62,000 -7,4 R	740 23 62,000 R	NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA
Burythe nzylphtha late Di - n - Octol Philate esticide s/PCRs (np/L) Talorodane sorganic Compounds (ng/L) Mumisum Astimony Arse nic Barium Berytium Calcium Tardanium Coball Copper	10,400 8.3 B 115 B 50,600 25 14,000	11.600 12.1 12.1 121 B 45.600 23 22 B 26,600	710 30 8 62,000 7,4 R 2,000	740 23 62,000 7.9 R 2,000	NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA
Butytbe uzytphtha in te Di - a - Oent Phithate exteride s/PCRs (np/L) Thiorodan and the compounds (ng/L) Autimony Arxenic Sarium Lerytium Caloium Thronium Cabail Copper roa Lead	10,400 8.3 B 115 B 50,600 25 14,000	11.600 12.1 12.1 B 12.1 B 12.1 B 12.2 B 25.600	710 30 8 62,000 7.4 R 2,000	740 	NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA
Survibe azyiphtha hise Di - a - Octyl Phihlate esticides/PCRs (up/L) Chlorodane sorganic Compounds (ug/L) Numisum Astimony Arica ac Sarium Cadmium Caldinium Chromium Coball Copper roa cad fagnesium	10,400 8.3 B 115 B 50,600 25 14,000	11.600 12.1 121 B 45,600 23 22 B 26,600 12,200	710 30 8 62,000 7.4 R 2,000	740 23 62,000 7,9 R 2,000	NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA
Butythe uzytphtha hite Di - a - Oend Philhate esticides/PCRs (up/L) Chlorodane borganic Composads (ug/L) Aumisum Autimony Arts aic Barium Estritum Cadminum Chromium Choosium Chromium Choosium Laguesium Lagu	10,400 8.3 B 115 B 50,600 25 14,000 13,700 781	11.600 12.1 12.1 B 45.600 23 22 B 26.600 1,020	710 30 8 62,000 7.4 R 2,000 12,000 740	740 23 62,000 7.9 R 2,000 12,000 740	NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA NA
Surithe nayiphtha late Di = n - Oent Philate esticide s/PCRs (np/L) Thiorodane sorganic Compounds (ng/L) Mumisum latimony Arse nic Sarium Levisium Latonium Latonium Lobali Lopper roa and fagnesium	10,400 8.3 B 115 B 50,600 25 14,000 13,700 781	11.600 12.1 12.1 B 45.600 23 22 B 26,600 1,020	710 	740 23 62,000 7,9 R 2,000	NA NA NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA
Surithe nzyiphtha late Di - n - Octof Philate esticide s/PCRs (np/L) Thiorodane sorganic Compounds (ng/L) Umnisum latimony Arse arc Jarium Lerytium Ladmium Latoum Thromium Lobal Lopper Toa end fagnesium farguesse	10,400 8.3 B 115 B 50,600 25 14,000 781 	11.600 12.1 12.1 B 45,600 23 22 B 26,600 1,020	710 30 8 62,000 7.4 R 2,000 740 R	740 23 62,000 2,9 R 2,000 740	NA NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA NA NA
Survibe nayiphtha late Di = n - Octof Philate esticides/PCRs (np/L) Chlorodane corganic Compounds (ng/L) duminum autimony tracaic darium cadmium aldium chromium obail copper roa ead fagnesium fangnese farcury fackel oussium	10,400 8.3 B 115 B 50,600 25 14,000 781 9,990	11.600 12.1 12.1 B 45,600 23 22 B 26,600 1,020 7,570	710 30 8 62,000 7.4 R 2,000 740 12,000 740 R	740 23 62,000 7.9 R 2,000 12,000 740	NA NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA NA NA	NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA
Butythe uzytphtha hite Di-a-Octyl Phthlate esticides/PCRs (up/L) Chlorodane borganic Compounds (ug/L) Auminum Autimony Arte nic Barium Cadminum Cadminum Chronium Chr	10,400 8.3 B 115 B 50,600 25 14,000 13,700 781 9,990	11.600 12.1 12.1 B 45.600 23 22 B 26,600 1,020 7,570	710 30 8 62,000 7.4 R 2,000 740 12,000 740 R 4,900 R	740 23 62,000 7.9 R 2,000 12,000 5,100	NA NA NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA NA NA	NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N
Butytbe uzylphtha hte Di-a-Octyl Phthlate esticides/PCBs (up/L) Chlorodane sorganic Compounds (ug/L) Alumisum hatimony Arse nic sarium Calcium Chromium Calcium Chromium Calcium Chromium Calcium Chromium Coball Copper roa cad fingaesium	10,400 8.3 B 115 B 50,600 25 14,000 13,700 781 9,990	11.600 12.1 12.1 B 45.600 23 22 B 26.600 1,200 1,020 7,570	710 30 8 62,000 7,4 R 2,000 740 R 4,900 R	740 23 62,000 7.9 R 2,000 12,000 740 5,100	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA	NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA
Butythe uzytphtha late Di-a-Ocat Phthlate esticides/PCRs (up/L) Chlorodane sorganic Compounds (up/L) Numinum Antimony Arse aic Barium Letrythum Latenium Calcium Chromium Cobalt Copper roa Lead Lagnesium Latenium Latenium Latenium Loure Licenium L	10,400 8.3 B 115 B 50,600 25 14,000 13,700 781 9,990 74,500	11.600 12.1 12.1 B 45.600 23 12.200 1,020 7.570 65,100	710 	740 23 62,000 12,000 740 5,100 83,000	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA	NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N
Butythe nzylphtha hite Di-n-Oerd Phthlate esticides/PCRs (np/L) Chlorodone norganic Compounds (ng/L) Aluminum Antimony Arsa nic Barrium Berytium Caldinium Chlomium Chlomium Chonal Gapper ron Lead Anguesium Stanganese dercury Sichel Johani Chloromies Colorium Challium Challium	10,400 8.3 B 115 B 50,600 25 14,000 781 9,990 74,500	11.600 12.1 12.1 B 	710 30 8 62,000 7.4 R 2,000 740 12,000 740 R 4,900 R	740 23 62,000 7.9 R 2,000 12,000 740 5,100	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N
Butythe uzylphtha hite Di - a - Oeryl Phihlate exticides/PCBs (up/L) Chlorodane norganic Compounds (ug/L) Alumisum Antimony Arsenic Sarvium Calcium Calcium Chromium Coball Copper	10,400 8.3 B 115 B 50,600 25 14,000 13,700 781 9,990 74,500	11.600 12.1 12.1 B 45.600 23 12.200 1,020 7.570 65,100	710 	740 23 62,000 7.9 R 2,000 740 5,100 83,000	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA	NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N

- NA * Not Analysed For a Enumered Quantity
- -- I Indicates Analyte was not detected in maple

 B = Analyte was found in the blank as well as the 10 mple

R « Velor to 19 rejecte à due to blank communication identified in quality control.

Sources: Supplemental Remedial Investigation for Penubihity Soudy of Welle O. & H. Site, Woburn, MA: Ebeste Services, Inc., 1988.

Welle O. & H. Sale Remedial Investigation Report à Volumes I—IV; NUS Corporation.

Appendix A.2

Data Summary Tables and Figure Excerpts – RETEC 1994

Draft Remedial Investigation

- Southwest Properties

IN LIC

SURFACE SOIL VOC RESULTS
All Values are in mg/kg

06815003 FIGURE

SURFACE SOIL SVOC RESULTS
All Values are in mg/kg

06818003 Тиринд

KI LIC

SURFACE SOIL PCB RESULTS All Values are in mg/kg

FRURE

+ 1,2 OCE & ICE Not detected except as nated

SUBSURFACE SOIL VOC RESULTS
All Values are in mg/kg

0631S003 FIGURE

SUBSURFACE SOIL SVOC RESULTS
All Values are in mg/kg

GEISOO3

THE YAR

SUBSURFACE SOIL PCB RESULTS
All Values are in mg/kg

FIGURE

· Pesticides not detected except as noted.

DETECTED GROUNDWATER SVOC AND PESITICIDE RESULTS
All Values are in ug/L

0681S003 FIGURE **5-10**

Acetone		0.0089 00		0.0051 UJ		0.0083 UJ		0.0091 UJ				0.0090 UJ		0.0144 UJ		0.0330 UJ	
Carbon Disulfide	<	0.0027 U	<	0.0027 U	<	0.0028 U	<	0.0030 U	<	0.0133	· <	0.0025 U	<	0.0026 U	<	0.0026 U	<
1,1-Dichloroethene	ł	0.0012 J	1	0.0011 J	<	0.0028 U		0.0011 J	ł	0.0048		0.0017 J	<	0.0026 U		0.0009 J	1
1,1-Dichloroethane	<	0.0027 U	<	0.0027 U	<	0.0028 U	<	0.0030 U	<	0.0133	<	0.0025 U	<	0.0026 U	 <	0.0026 U	<
1,2-Dichloroethene (total)	<	0.0027 U	<	0.0027 U	<	0.0028 U	<	0.0030 U	<	0.0133	<	0.0025 U	<	0.0026 U	<	0.0026 U	<
Chloroform	<	0.0027 U	<	0.0027 U	<	0.0028 U	<	0.0030 U	<	0.0133	<	0.0025 U	<	0.0026 U	<	0.0026 U	 <
1,2-Dichloroethane	<u></u>	0.0027 U	<	0.0027 U	[<	0.0028 U	<	0.0030 U	<	0.0133	<	0.0025 U	<	0.0026 U	 <	0.0026 U	<
2-Butanone		0.0108 UJ		0.0047 UJ		0.0053 UJ		0.0057 UJ		0.0319		0.0061 UJ		0.0046 UJ		0.0058 UJ	
1,1,1-Trichloroethane	<	0.0027 U	<	0.0027 U	<	0.0028 U	<u></u>	0.0030 U	<	0.0133	<	0.0025 U	<	0.0026 U	<u> </u>	0.0026 U	<
Carbon Tetrachloride	<	0.0027 U	<	0.0027 U	<	0.0028 U	<	0.0030 U	<	0.0133	<	0.0025 U	<	0.0026 U	<	0.0026 U	<
Bromodichloromethane	<	0.0027 U	<	0.0027 U	 <	0.0028 U	<	0.0030 U	<	0.0133	<	0.0025 U	<	0.0026 U	<	0.0026 U	<
1,2-Dichloropropane	<	0.0027 U	<	0.0027 U	<	0.0028 U	<	0.0030 U	<	0.0133	<	0.0025 U	<	0.0026 U	 <	0.0026 U	 <
cis-1,3-Dichloropropene	<	0.0027 U	<	0.0027 U	<	0.0028 U	<	0.0030 U	<	0.0133	<	0.0025 U	<	0.0026 U	<	0.0026 U	<
Trichloroethene	<	0.0027 U	<	0.0027 U	<	0.0028 U	<	0.0030 U	<	0.0133	<	0.0025 U	<	0.0026 U	<	0.0026 U	 <
Dibromochloromethane	<	0.0027 U	<	0.0027 U	<	0.0028 U	<	0.0030 U	<	0.0133	<	0.0025 U	<	0.0026 U	<	0.0026 U	<
1,1,2-Trichioroethane	<	0.0027 U	<	0.0027 U	<	0.0028 U	<	0.0030 U	<	0.0133	<	0.0025 U	<	0.0026 U	<	0.0026 U	<
Benzene	<	0.0027 U	<	0.0027 U	<	0.0028 U	<	0.0030 U	<	0.0133	<	0.0025 U	<	0.0026 U	<	0.0026 U	<
trans-1,3-Dichloropropene	<	0.0027 U	<	0.0027 U	<	0.0028 U	<	0.0030 U	<	0.0133	<	0.0025 U	<	0.0026 U	<	0.0026 U	<
Bromoform	<	0.0027 U	<	0.0027 U	<	0.0028 U	<	0.0030 U	<	0.0133	<	0.0025 U	 <	0.0026 U	 <	0.0026 U	<
4-Methyl-2-Pentanone	<	0.0027 U	<	0.0027 U	<	0.0028 U	<	0.0030 U	<	0.0133	<	0.0025	<	0.0026 U	<	0.0026	<
` (exanone	<	0.0027 U	<	0.0027 U	<	0.0028 U	<	0.0030 U	<	0.0133	<	0.0025	<	0.0026 U	<	0.0026	<
achloroethene	<	0.0027 U	<	0.0027 U	<	0.0028 U	<	0.0030 U	<	0.0133	<	0.0025 U]<	0.0026 U	<	0.0026 U] <
1,1,2,2-Tetrachloroethane	<	0.0027 U	<	0.0027 U	<	0.0028 U	<	0.0030 U	<	0.0133	<	0.0025 U	<	0.0026 U	<	0.0026 U	<
Toluene	<	0.0027 U	<	0.0027 U	<	0.0028 U	<	0.0030 U	ł	0.0223	<	0.0025 U	<	0.0026 U		0.0014 J	<
Chlorobenzene	<	0.0027 U	<	0.0027 U	<	0.0028 U	<	0.0030 U	<	0.0133	<	0.0025 U	<	0.0026 U	<	0.0026 U	<
Ethylbenzene	<	0.0027 U	<	0.0027 U	 <	0.0028 U	<	0.0036 U		0.0160	<	0.0025 U	<	0.0026 U		0.0015 J	<
Styrene	<	0.0027 U	<	0.0027 U	<	0.0028 U	<	0.0030 U		0.0027	<	0.0025 U	 <	0.0026 U	<	0.0026 U	<
Xylene (total)	<	0.0027 U	<	0.0027 U	<	0.0028 U	<	0.0030 U		3.5	<	0.0025 U	<	0.0026 U		0.0080	<

DUP-LAB is a duplicate sample of AB-SS9 All values in mg/kg

Acetone		UU 0800.0		0.0070 UJ		0.0110 UJ		W		W	П	: W		0.0230 U		0.0083 UJ	
Carbon Disulfide	<	0.0025 U	<	0.0024 U	<	0.0025 U	<	0.0070 U	<	U	<	U	<	0.0020 U	<	0.0020 U	<
1,1-Dichloroethene	<	0.0025 U	1	U 8000.0		0.0011 J	<	0.0070 U	<	U	<	U	<	0.0020 U	<	0.0020 U	<
1,1-Dichloroethane	<	0.0025 U	<	0.0024 U	<	0.0025 U	<	0.0070 U	<	U	<	U	<	0. 0020 U	<	0.0020 U	<
1,2-Dichloroethene (total)	<	0.0025 U		0.0049	<	0.0025 U	<	0.0070 U	<	U	<	U	<	0.0020 U	<	0.0020 ป	<
Chloroform	<	0.0025 U	<	0.0024 U	<	0.0025 U	<	0.0070 U	<	υ	<	U	<	0.0020 U	<	0.0020 U	<
1,2-Dichloroethane	<	0.0025 U	<	0.0024 U	<	0.0025 U	<	0.0070 U	<	U	<	υ	<	0.0020 U	<	0.0020 U	<
2-Butanone	<	0.0025 UJ		0.0051 UJ		0.0058 UJ		∙zast U		U	П	U		0.0038		0.0022 UJ	<
1,1,1-Trichloroethane	<	0.0025 U	<	0.0024 U	<	0.0025 U	<	0.0070 U	<	U	<	U	<	0.0020 U	<u> </u>	U 0000.0	<
Carbon Tetrachloride	<	0.0025 U	<	0.0024 U	<	0.0025 U	<	0.0070 U	<	ប	-	U	<	0.0020 U	<	0.0020 U	<
Bromodichloromethane	<	0.0025 U	<	0.0024 U	<	0.0025 U	<	0.0070 U	<	U	-	U	<	0.0020 U	<	0.0020 U	<
1,2-Dichloropropane	<	0.0025 U	<	0.0024 U	<	0.0025 U	<	0.0070 U	<	U	k	U	<	0.0020 U	<	0.0020 U	<
cis-1,3-Dichloropropene	<	0.0025 U	<	0.0024 U	<	0.0025 U	<	0.0070 U	<	U	<	U	<	0.0020 U	<	0.0020 U	<
Trichloroethene	<	0.0025 U		0.0018 J	<	0.0025 U	<	0.0070 U	<	U	<	U	<	0.0020 U	<	0.0020 U	<
Dibromochloromethane	<	0.0025 U	<	0.0024 U	<	0.0025 U	<	0.0070 U	<	U	-	U	<	0.0020 U	<	0.0020 U	<
1,1,2-Trichloroethane	<	0.0025 U	<	0.0024 U	<	0.0025 U	<	0.0070 U	<	U	<	U	<	0.0020 U	<	0.0020 U	<
Benzene	<	0.0025 U	<	0.0024 U	ŀ	0.0005 J	<	0.0070 U	<	U	<	U	<	0.0020 U	<	0.0020 U	<
trans-1,3-Dichloropropene	<	0.0025 U	<	0.0024 U	<	0.0025 U	<	0.0070 U	<	U	<	U	<	0.0020 U	<	0.0020 U	<
Bromoform	<	0.0025 U	<	0.0024 U	<	0.0025 U	<	0.0070 U	<	U	k	U	<	0.0020 U	<	0.0020 U	<
4-Methyl-2-Pentanone	<	0.0025 <u>UJ</u>	<	0.0024 UJ	<	0.0025 UJ	<	0.0070 U	<	U	<	U	<	0.0020 U	<	0.0020 U	<
2-Hexanone	<	0.0025	<	0.0024	<	0.0025	<	0.0070 U	<	U	<	U	<	0.0020 U	<	0.0020 U	<
Tetrachloroethene	<	0.0025 U	<	0.0024 U	<	0.0025 U	<	0.0070 U	<	υ	<	U	<	0.0020 U	<	0.0020 U	<
1,1,2,2-Tetrachloroethane	<	0.0025 U	<	0.0024 U	<	0.0025 U	<	0.0070 U	<	U	<	บ	<	0.0020 U	<	0.0020 U	<
Toluene	ŀ	0.0013 J		0.0012 J		0.0077	[<	0.0070 U	<	U	<	U	<	0.0020 U		0.0017 J	<
Chlorobenzene	<	0.0025 U	<	0.0024 U	<	0.0025 U	<	0.0070 U	<	U	 <	U	<	0.0020 U	<	0.0020 U	<
Ethylbenzene	ĺ	0.0016 J	<	0.0024 U		0.0037	<	0.0070 U	<	U	<	U	<	0.0020 U	<	0.0020 U	<
Styrene	<	0.0025 U	<	0.0024 U	<	0.0025 U	<	0.0070 U	<	U	<	u v U	<	0.0020 U	<	0.0020 U	<
Xylene (total)		0.0152	.	0.0043	<u> </u>	0.0195	<	0.0070 U	<	0.0030 U	<	U_	<	0.0020 U	<	0.0020 U	<

DUP-LAB is a duplicate san All values in mg/kg

	Γ'		T	0.000	1	0.000	_	V.412 U	-	U.7US U	`	V.337 V	`	U.336 U	`	V.347 U	< -	0.355 U
4-Methylphenol	 <	0.370 U	 <	0.358 U	[<	0.383 U	<	0.412 U	<	0.709 U	<	0.351 U	<	0.358 U	<	0.347 U	 <	0.355 U
N-Nitroso-di-n-propylamine	<	0.370 U	<	0.358 U	<	0.383 U	<	0.412 U	<	0.709 U	<	0.351 U	<	0.358 U	<	0.347 U	<	0.355 U
Hexachoroethane	 <	0.370 U	<	0.358 U	<	0.383 U	<	0.412 U	<	0.709 U	i<	0.351 U	<	0.358 U	<	0.347 U	<	0.355 U
Nitrobenzene	[<	0.370 U	<	0.358 U	<	0.383 U	<	0.412 U	 <	0.709 U	 <	0.351 U	<	0.358 U	k	0.347 U	<	0.355 U
Isophorone	<	0.370 U	<	0.358 U	<	0.383 U	<	0.412 U	<	0.709 U	<	0.351 U	<	0.358 U	l<	0.347 U	<	0.355 U
2-Nitrophenol	 <	0.370 U	<	0.358 U	 <	0.383 U	 <	0.412 U	<	0.709 U	 	0.351 U	 	0.358 U	<	0.347 U	 	0.355 U
2,4-Dimethylphenol	<	0.370 U	 <	0.358 U	 <	0.383 U	<	0.412 U	<	0.709 U		0.351 U	<	0.358 U	<	0.347 U	[~	0.355 U
bis(2-chloroethoxy)methane	 <	0.370 U	<	0.358 U	<	0.383 U	<	0.412 U	<	0.709 U	Ľ	0.351 U	<	0.358 U	<	0.347 U	<	0.355 U
2,4-Dichlorophenol	k	0.370 じ	<	0.358 U	<	0.383 U	<	0.412 U	\ <u></u>	0.709 U	Ľ	0.351 U	<	0.358 U	[~	0.347 U	[0.355 ປ 0.355 ປ
1,2,4-Trichlorobenzene	k	0.370 U	<	0.358 U	<	0.383 U	<	0.412 U		0.709 U	Ľ	0.351 U	<	0.358 U	~	0.347 U	1	
Naphthalene	<	0.370 U	<	0.358 U	<	0.383 U	<	0.412 U		0.780 U	ľ.	0.351 U	<	0.358 U			 <	0.355 U
4-Chloroaniline	<	0.370 U	<	0.358 U	<	0.383 U	<	0.412 U	<	0.709 U	E .	0.351 U			 	0.347 U	 <	0.355 U
Hexachlorobutadiene		0.370 U	<	0.358 U		0.383 U	<	0.412 U		_			<	0.358 U	 <	0.347 U	<	0.355 U
4-Chioro-3-methylphenol	<	0.370 U		0.358 U	[~	0.383 U		0.412 U	I .	0.709 U	 <	0.351 U	<	0.358 U	<	0.347 U	<	0.355 U
2-Methylnaphthalene	[0.370 U	<	0.358 U	`	0.383 U	<		<	0.709 U	 <	0.351 U	<	0.358 U	<	0.347 U	<	0.355 U
Hexachlorocyclopentadiene	<	0.370 U	1	0.358 U			<	0.412 U		1.418	1	0.035 J	<	0.358 U	<	0.347 U	<	0.355 U
2,4,6-Trichlorophenol	1		<u> </u>		 <	0.383 U	<	0.412 U	<	0.709 U	 <	0.351 U	<	0.358 U	<	0.347 U	 <	0.355 U
2,4,5-Trichlorophenol	<	0.370 U 0.926 U	<u> </u>	0.358 U	 <	0.383 U	<	0.412 U	<	0.709 U	 <	0.351 U	<	0.358 U	<	0.347 U	<	0.355 U
1 1 1	<u> </u>		<u> </u>	0.896 U	<u> </u>	0.958 U	<	1.029 U	<	1.773 U	<	0.877 U	<	0.896 U	<	0.868 U	<	0.887 U
2-Chloronaphthalene 2-Nitroaniline	<	0.370 U	 <	0.358 U	<	0.383 U	<	0.412 U	<	0.709 U	<	0.351 U	<	0.358 U	<	0.347 U	<	0.355 U
	<	0.926 U	<	0.896 U	<	0.958 U	<	1.029 U	<	1.773 U	<	0.877 U	<	0.896 U	<	0.868 U	<	0.887 U
Dimethlylphthalate	<	0.370 U	<	0.358 U	<	0.383 U	l	0.041 J	<	0.709 U	<	0.351 U	<	0.358 U	<	0.347 U	<	0.355 い
Accepathylene initrotoluene	<	0.370 U	<	0.358 U	<	0.383 U	<	0.412 U	1	0.142 J	 <	0.351 U	<	0.358 U	<	0.347 U	<	0.355 U
	<	0.370 U	<	0.358 U	 <	0.383 U	<	0.412 U	<	0.709 U	 <	0.351 U	<	0.358 U	<	0.347 U	<	0.355 U
Coaniline	<	0.926 UJ	<	0.896 UJ	<	0.958 UJ	<	1.029 UJ	<	1.773 UJ	 <	0.877 U	<	UJ 868.0	<	0.868 UJ	<	0.887 U
	<	0.370 U	<	0.358 U	 <	0.383 U	<	0.412 U		0.071 J	<	0.351 U	<	0.358 U	<	0.347 U	 <	0.355 U
2,4-Dinitrophenol	 <	0.926 U	<	0.896 U	 <	0.958 U	<	1.029 U	<	1.773 U	<	0.877 U	<	0.896 U	<	0.868 U	<	0.887 U
4-Nitrophenol	<	0.926 U	<	0.896 U	<	0.958 U	<	1.029 U	<	1.773 U	 <	0.877 U	<	0.896 U	<	0.868 U	<	0.887 U
Dibenzofuran	 <	0.370 U	<	0.358 U	<	0.383 U	<	0.412 U		0.142 J	[<	0.351 U	<	0.358 U	<	0.347 U	<	0.355 U
2,4-Dinitirotoluene	<	0.370 U	<	0.358 U	<	0.383 U	<	0.412 U	<	0.709 U	<	0.351 U	<	0.358 U	<	0.347 U	<	0.355 U
Diethylphthalate	 <	0.370 U	<	0.358 U	<	0.383 U	<	0.412 U	<	0.709 U	<	0.351 U	<	0.358 U	<	0.347 U	<	0.355 U
4-Chlorophenyl-phenylether	<	0.370 U	<	0.358 U	<	0.383 U	<	0.412 U	<	0.709 U	<	0.351 U	<	0.358 U	<	0.347 U]<	0.355 U
Fluorene	<	0.370 U	<	0.358 U	<	0.383 U	<	0.412 U	ļ.	0.142 J	<	0.351 U	<	0.358 U	<	0.347 U	 <	0.355 U
4-Nitroaniline	<	0.926 U	<	0.896 U	<	0.958 U	<	1.029 U	<	1.773 U	<	0.877 U	<	0.896 U	<	0.868 U	<	0.887 U
4,6-Dinitro-2-methyphenol	<	0.926 U	<	0.896 U	<	0.958 U	<	1.029 U	<	1.773 W	<	0.877 UJ	<	0.896 U	<	0.868 U	l<	0.887 U
N-Nitrosodiphenylamine (1)	<	0.370 U	<	0.358 U	<	0.383 U	<	0.412 U	<	0.709 UJ	<	0.351 UJ	<	0.358 U	<	0.347 U	_{<}	0.355 U
4-Bromophenyl-phenylether	<	0.370 U	<	0.358 U	<	0.383 U	<	0.412 U	<	0.709 UJ	<	0.351 UJ	<	0.358 U	<	0.347 U	<	0.355 U
Hexachlorobenzene	<	0.370 U	<	0.358 U	<	0.383 U	<	0.412 U	<	0.709 LJ	<	0.351 UJ	 <	0.358 U	<	0.347 U	<	0.355 U
Pentachlorophenol	<	0.926 U	<	0.896 U	<	0.958 U	<	1.029 U	<	1.773 W	<	0.877 W	<	0.896 U	<	0.868 U	 <	0.355 U
Phenanthrene	<	0.370 U	<	0.358 U	<	0.383 U	<	0.412 U		1.277 J		0.035 J	ļ	0.036 J	<	0.347 U	-	0.355 U
Anthracene	<	0.370 U	<	0.358 U	<	0.383 U	<	0.412 U		0.284 J	<	0.351 W	 <	0.358 U	<	0.347 U	<u>-</u>	0.355 U
Carbazole	<	0.370 U	<	0.358 U	<	0.383 U	<	0.412 U	<	0.709 UJ	 <	0.351 UJ	l<	0.358 U	<	0.347 U	·	0.355 U
Di-n-butylphthalate		0.074 J	ŀ	0.108 J		0.038 J		0.123 J		0.142 J		0.211 J		0.072 J	1	0.111 J	<u>-</u>	0.355 U
Fluoranthene		0.037 J	1	0.072 J		0.077 J		0.082 J		1.702 J		0.070 J		0.108 J	<	0.347 U	Į.	0.355 U
Pyrene		0.074 J	1	0.072 J		0.115 J	•	0.082 J		1.277		0.140 J	l	0.072 J	<	0.347 U		0.355 U
Butylbenzylphthalate		0.593	<u> </u>	0.573		0.038 J	ĺ	0.288 J		0.638 J		0.211 J		0.072 J	\ <u></u>	0.347 U		0.355 U
	<	0.370 UJ	<	0.358 UJ	<	0.383 UJ	~	0.412 W	٧	0.709 U	<	0.351 UJ	<	0.358 UJ	2	0.347 UJ	2	0.355 U
Benzo(a)anthracene	<	0.370 U	<	0.358 U		0.380 J	<	0.412 U		1.064		0.070 J	i	0.036 J	<	0.347 U	<	0.355 U
	<	0.370 U	<	0.358 U			<	0.412 U		1.489	l	0.105 J	İ	0.072 J	<	0.347 U	<	0.355 U
bis(2-ethylhexyl)phthalate		1.111 U	<	0.358 U	<	0.383 U	<	0.412 U		2.624 U		0.947 W	_	0.358 U		0.347 U	<	0.355 U
Di-n-octylphthalate		0.778	<	0.358 U	<		<	0.412 U			<	0.351 U		0.358 U		0.347 U	` <	0.355 U
Benzo(b)fluoranthene	<	0.370 U	<	0.358 U	<		<	0.412 U		1.560	l	0.140 J	Į.	0.358 U	ľ.	0.347 U	` <	0.355 U
Benzo(k)fluoranthene	<	0.370 U	 <	0.358 U	<	0.383 U	<	0.412 U		1.064		0.070 J	Į.	0.358 U	D.	0.347 U	` <	0.355 U
Benzo(a)pyrene	<	0.370 U	 <	0.358 U	<	0.383 U	<	0.412 U		1.064		0.070 J	ا ح	0.358 U	E .		<	0.355 U
Indeno(1,2,3-cd)pyrene	<	0.370 U	<	0.358 U	<	0.383 U	<	0.412 U		1.064		0.175 J	آيا	0.358 U	C	0.347 U	Ľ	0.355 U
vz(a,h)anthracene	<	0.370 U	 <	0.358 U	<		<		<		<	0.173 U	Ľ	0.358 U	Ľ	0.347 U		0.355 U
)-(g,h,i)perylene	<	0.370 U	<		<	0.383 U	<	0.412 U	-	1.206	1	0.331 U 0.246 J	Ľ	0.358 U	Ľ			
								3. T.L. Q		1.200	Ь	V.E-10 U	<u> </u>	~·~~ U	<u> </u>	0.347 U	Ľ.	0.355 U

z,c oxysis(r-cinioropropane)				<	0.344 U	<	1.010 03	۲	9.427 UJ	<
	< 0.340	יטנ <	0.351 U	<	0.344 U	<	1.010 U	<	0.427 U	<
N-Nitroso-di-n-propylamine	< 0.340) U <	0.351 U	<	0.344 U	<	1.010 U	i <	0.427 U	<
Hexachoroethane -	< 0.340	ן טכ	0.351 U	<	0.344 U	<	1.010 U	<	0.427 U	<
Nitrobenzene	< 0.340) U <	0.351 U	<	0.344 U	<	1.010 U	<	0.427 U	<
Isophorone	< 0.340) U <	0.351 U	<	0.344 U	<	1.010 U	 <	0.427 U	<
2-Nitrophenol	< 0.340) U <	0.351 U	<	0.344 U	<	1.010 U	 <	0.427 U	<
	< 0.340) U [<	0.351 U	<	0.344 U	<	1.010 U	<	0.427 U	<
bis(2-chloroethoxy)methane	< 0.340)U <	0.351 U	<	0.344 U	<	1.010 U	 <	0.427 U	<
	< 0.340)U <	0.351 U	<	0.344 U	<	1.010 U	<	0.427 U	<
	< 0.340)U <	0.351 U	<	0.344 U	<	1.010 U	<	0.427 U	<
	< 0.340) U <	U	<	0.344 U	<	1.010 U	<	0.427 U	<
	< 0.340) W <	0.351 UJ	<	0.344 U	<	1.010 U	<	0.427 U	<
	< 0.340)U <	0.351 U	<	0.344 U	<	1.010 U	<	0.427 U	<
4-Chloro-3-methylphenol	< 0.340) U <	0.351 U	<	0.344 U	<	1.010 U	<	0.427 U	 <
	< 0.340) U	0.035 J		0.069 J	<	1.010 U	<	0.427 U	<
,	< 0.340) U <	0.351 U	<	0.344 U	<	1.010 U	<	0.427 U	 <
	< 0.340		0.351 U	<	0.344 U	<	1.010 U	<	0.427 U	<
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	< 0.850		-	<	0.859 U	<	2.525 U	<	1.068 U	<
1	< 0.340			<	0.344 U	<	1.010 U	<	0.427 U	<
1	< 0.850			<	0.859 U	<	2.525 U	<	1.068 U	<
1	< 0.340			<	0.344 U	<	1.010 U	1	0.043 J	<
	< 0.340	·	0.070 J	<	0.344 U	<	1.010 U	 <	0.427 U	<
2,6-Dinitrotoluene				<	0.344 U	<	1.010 U	(<	0.427 U	<
3-Nitroanifine				<	0.859 UJ	<	2.525 UJ	<	1.068 WJ	<
Acenaphthene			0.070 J	<	0.344 U	<	1.010 U	<	0.427 U	<
2,4-Dinitrophenol		- 1		<	0.859 U	<	2.525 U	<	1.068 U	 < .
4-Nitrophenol < Dibenzofuran <				<	0.859 U	<	2.525 U	<	1.068 U	 <
		- 1	0.035 J	<	0.344 U	<	1.010 U	<	0.427 U	<
2,4-Dinitirotoluene < Diethylphthalate <				 <	0.344 U	<	1.010 U	<	0.427 U	<
4-Chlorophenyl-phenylether				< <	0.344 U 0.344 U	<	1.010 U	<	0.427 U	<
Fluorene			0.351 U 0.070 J	\ <	0.344 U	< <	1.010 U	<	0.427 U	<
4-Nitroaniline				<	0.859 U	<	1.010 U 2.525 U	< <	0.427 U	<
4,6-Dinitro-2-methyphenol			0.877 U	<	0.859 U	<	2.525 U	<	1.068 U 1.068 U	<
N-Nitrosodiphenylamine (1)				<	0.344 U	~	1.010 U	<		<
4-Bromophenyl-phenylether <			0.351 U	<	0.344 U	<	1.010 U	\ <	0.427 U 0.427 U	[]
Hexachlorobenzene <			0.351 U	[~	0.344 U	<	1.010 U	\ <	0.427 U	< ·
Pentachlorophenol <			0.877 U	[~	0.859 U	<		`	1.068 U	[
Phenanthrene	0.034		0.772 U	`	0.275 J	[0.202 J	<u> </u>	0.128 J	1 :
Anthracene <			0.140 J	<	0.344 U	<	1.010 U	<	0.427 U	<
Carbazole <			0.070 J	`	0.344 U	<		<	0.427 U	
Di-n-butylphthalate <	-	_	0.070 J	<	0.344 U]	0.404 J		0.128 J	<
Fluoranthene	0.068		1.193	1	0.378	i	0.303 J		0.214 J	F (
Pyrene	0.068	J	1.158	1	0.344		0.303 J	l	0.171 J	1 7
Butylbenzylphthalate <	0.340	υl	0.035 J	<	0.344 U	 <	1.010 U	<	0.427 U	 <
3,3'-Dichlorobenzidine <	0.340	W <	0.351 UJ	 	0.344 UJ	<		<u> </u>	0.427 W	<u> </u>
Benzo(a)anthracene <	0.340	U	0.702	1	0.172 J		0.101 J		0.128 J	ľ
Chrysene <			0.912	-	0.309 U		0.202 J		0.214 J	1 6
bis(2-ethylhexyl)phthalate	0.442	U <	0.351 U	<	0.344 Ų	1	5.051 J	<	Ų	< '
Di-n-octylphthalate <		U <	0.351 U	<	0.344 U	<	1.010 U	<	0.427 U	k '
Benzo(b)fluoranthene <		U	1.018		0.378 ป	<	1.010 U	Ì	0.171 J	(
Benzo(k)fluoranthene <	_		0.596	1	0.206 J	<	1.010 U		0.085 J	(
Benzo(a)pyrene <		- 1	0.807	1	0.069 J	<	1.010 U		0.085 J	
Indeno(1,2,3-cd)pyrene <		_	0.702	1	0.309 J	<	1.010 U		0.085 J	
Dibenz(a,h)anthracene <					'					
Benzo(g,h,i)perylene <			0.140 J 0.737		0.069 J 0.275 J	< <	1.010 U 1.010 U	<	0.427 U	< 1

orradounary i	T-	9.9010 0	_	V.0010 V	_	O.0010 O	_	0.0020 0	`	U.0010 U	1	0.0017	_	0.0010		A'0011 A .	•	V.VO 10 U
dieldrin	 <	0.0037 UJ	<	0.0036 UJ	<	0.0038 UJ	<	0.0041 UJ	<	0.0035 U	<	0.0035 U	<	0, 0036 UJ	<	0.0035 U	<	0.0035 U
4,4'-DDE	1	0.0046		0.0031 J	<	0.0038 U	<	0.0041 U	<	0.0035 U	 <	0.0035 U	<	0. 0036 U	<	0.0035 U	<	0.0035 U
Endrin	l	0.0030 J	<	0.0036 UJ	[<	0.0038 UJ	 <	0.0041 UJ	<	0.0035 U	<	0.0035 U	<	0.0036 UJ	<	0.0035 U	<	0.0035 U
Endosulfan II	<	0.0037 U	<	0.0036 U	<	0.0038 U	<	0.0041 U	<	0.0035 U	<	0.0035 U		0.0023 J	<	0.0035 U	<	0.0035 U
4,4'-DDD	1	0.0167 J	 <	0.0036 U	<	0.0038 U		0.0046	<	0.0035 U	<	0.0035 U	<	0.0036 U	<	0.0035 U	<	0.0035 U
Endosulfan Sulfate	<	0.0037 U	<	0.0036 U	<	0.0038 U	<	0.0041 U	<	0.0035 U	<	0.0035 U	<	0.0036 U	<	0.0035 U	<	0.0035 U
4,4'-DDT	İ	0.0116 J	<	0.0036 U	<	0.0038 U		0.0107 J	<	0.0035 U	<	0.0035 U	1	0.0075 J	1	0.0041 J	<	0.0035 U
Methoxychlor	<	0.0180 U	<	0.0180 U	<	0.0190 U	<	0.0200 U	<	0.0180 U	 <	0.0170 U	<	0.0180 U	<	0.0170 U	<	0.0180 U
Endrin Ketone	<	0.0037 U	<	0.0036 U	<	0.0038 U	<	0.0041 U	<	0.0035 U	 <	0.0035 U	<	0.0036 U	<	0.0035 U	<	0.0035 U
Endring aldehyde	<	0.0037 U	 <	0.0036 U	<	0.0038 U	<	0.0041 U	<	0.0035 U	 <	0.0035 U	<	0.0036 U	<	0.0035 U	<	0.0035 U
alpha-chlordaле		0.0040 J	<	0.0018 U	<	0.0019 U	<	0.0020 U	<	0.0018 U	 <	0.0017 U		0.0016 J	<	0.0017 U	<	0.0018 U
gamma-chlordane		0.0030 J	<	0.0018 U	 <	0.0019 U		0.0049	<	0.0018 U	<	0.0017 U		0.0033	<	0.0017 U	<	0.0018 U
Toxaphene	<	0.1850 U	<	0.1170 U	<	0.1910 U	<	0.2060 U	<	0.1770 U	<	0.1750 U	<	0.1790 U	<	0.1730 U	<	0.1770 U
Aroclor 1016	<	0.0370 U	<	0.0350 U	<	0.0380 U	<	0.0410 U	<	0.0350 U	<	0.0350 U	<	0.0360 U	<	0.0350 U	<	0.0350 U
Aroclor 1221	<	0.0740 U	<	0.0710 U	<	0.0760 U	<	0.0820 U	<	0.0710 U	<	0.0700 U	<	0.0720 U	<	0.0690 U	<	0.0710 U
Aroclor 1232	<	0.0370 U	<	0.0350 U	<	0.0380 U	<	0.0410 U	<	0.0350 U	<	0.0350 U	<	0.0360 U	<	0.0350 U	<	0.0350 U
Arocior 1242	<	0.0370 U	<	0.0350 U	<	0.0380 U	<	0.0410 U	<	0.0350 U	l	0.1060	<	0.0360 U		0.0420	<	0.0350 U
Aroclor 1248	<	0.0370 U	<	0.0350 U	<	0.0380 U	<	0.0410 U	<	0.0350 U	<	0.0350 U	<	0.0360 U	<	0.0350 U	<	0.0350 U
Aroclor 1254	<	0.0370 U	<	0.0350 U	<	0.0380 U		0.2960	<	0.0350 U	<	0.0350 U		0.1790	<	0.0350 U	<	0.0350 U
Aroclor 1260		0.0750		0.0960	<	0.0380 U	<	0.0410 U	<	0.0350 U	L	0.0520		0.0830		0.0560	<	0.0350 U

oncoodian :	15	0.0017 0	۲	0.0017 0	<u> </u>	U.UU17 U	<	0.0050 U	7	0.0021 U	<	0.
dieldrin	<	0.0034 U	<	0.0035 U	<	0.0034 U	<	0.0101 W	<	0.0043 UJ	1	0.
4,4*-DDE	<	0.0034 U	<	0.0035 U	<	0.0034 U	<	0.0101 U	Ĺ	0.0078	1	0.
Endrin	1	0.0030 J	1	0.0067 J	<	0.0034 U	<	0.0101 LJ	<	0.0043 LU	<	0.
Endosulfan II	<	0.0034 U	 <	0.0035 U	<	0.0034 U	<	0.0101 U	<	0.0043 U	1	0.
4,4'-DDD	<	0.0034 U	<	0.0035 U	<	0.0034 U	ı	0.0374 J		0.0483	ď	0.
Endosulfan Sulfate	<	0.0034 U	<	0.0035 U	<	0.0034 U	<	0.0101 U	↸	0.0043 U	٦,	0.
4,4'-DDT	<	0.0034 U	<	0.0035 U	<	0.0034 U	l	0.0169 J		0.1200 J	Ι`	0.
Methoxychlor	<	0.0170 U	<	0.0170 U	 <	0.0170 U	<	0.0500 U	k	0.0210 U	k	0.0
Endrin Ketone	<	0.0034 U	<	0.0035 U	 <	0.0034 U	<	0.0101 U	<	0.0043 U	-	0.0
Endring aldehyde	<	0.0034 U	 <	0.0035 U	<	0.0034 U		0.0177		0.0043 U	1	0.
alpha-chlordane	l	0.0520		0.0164 J	<	0.0017 U	Γ	0.3170	1	0.8920	ď	0.0
gamma-chlordane	İ	0.0290		0.0097 J	 <	0.0017 U	l	0.2510		1.9770		0.0
Toxaphene	<	0.1700 U	<	0.1750 U	<	0.1710 U	<	0.0503 U	<	0.2140 U	<	0.
Aroclor 1016	<	0.0340 U	<	0.0350 U	<	0.0340 U	<	0.1010 U	<	0.0430 U	Ż	Ö.
Aroclor 1221	<	0.0680 U	<	0.0700 U	<	0.0690 U	<	0.2010 U	آج ا	0.0850 U	\ <u></u>	0.2
Aroclor 1232	<	0.0340 U	<	0.0350 U	<	0.0340 U	<	0.1010 U	-	0.0430 U	-	0.
Aroclor 1242	<	0.0340 U	<	0.0350 U	k	0.0340 U	<	0.1010 U		0.0430 U	<	0.
Aroclor 1248	<	0.0340 U	<	0.0350 U	 <	0.0340 U	<	0.1010 U	Į.	0.0430 U	[0.1
Aroclor 1254	<	0.0340 U	<	0.0350 U	 <	0.0340 U		5.1220 J]	0.7
Aroclor 1260_	<	0.0340 U	<	0.0350 U	ļ	0.0530		2.1570 J			ĺ	0.3

J-0.,					1					_	O.E.		0.20		V.EU D		0.10		V.D0 D	!	0.12 0		0:50 D		U.U. L
Cadmium		1.6	l	1.4 B	l	0.92	1	2.1		4.3	5.4		2.5	ı	8.7		2.1		53]	5.9 J		5.1 J	i	1.4 J
Calcium		4,356	1	1,409	I	844	3,	006	1	9,301	5,765		3,839	1	6,452		9,155		5,839	}	7,935 J		3,896 J	ŀ	1,399 J
Chromium		13.2 J	1	11.9 J		j	1	6.8 J	1	18.2	20.8		12.8 J	ı	8.8		8.4		15.7	l	184 J		60.1 J		618 J
Cobalt		7.2 B	l	3.8 B		6.9 B		5.8 B		8.4	11.1		9.8	ı	12.1		20.2		12.6		7.5		8.9		2.7 B
Copper		26.7	ł	92.6		16.4	4	16.0		106	104		40.6	ı	85.4	l	20.2	i	59.7	İ	54.8 J		68.9 J	l	21.1 J
iron	1	17,161 J	16	3,923 J	1	12,460 J	13,	287 J		35,395	39,064		24,103 J	ı	32,469		36,838		32,590	a	4,925 J		44,810 J		13,928 J
Lead	ł	129 J		365 J	l	49.7 J	ŀ	195 J		838	646		480 J	ı	182		J		892 J		823 J		1207 J		524 J
Magnesium		3,491	1	,548		2,590	2,	175	Į.	4,535	4,918		3,522	1	4,713	-	7,691		5,376		2,621		2,843		1,296
Manganese	1	205 J	l _	132 J		211 J	l	182 J		269	280		192 J	1	363	i	315		249		294 J		344 J	ľ	104 J
Mercury	1	0.18			<	0.09 U	< c).09 U	<	0.089 U	< 0.078	U	0.12	<	0.093 U	 <	0.093 U		0.094	1	0.29 J		0.55 J	<	0.09
Nickel	ŀ	7.2		10.4		7.7	1	16.0	ı	51.8	29.3		10.7	7	29.6	l	13.1		25.3	1	5.4 J	1	27.2 J		11.6 J
Potassium	1	682 B		266 B		480 B		523 B		666 B	980		1,087	i	877		2,458		1,142		808	1	762	l	279 B
Selenium	<	0.45 U		0.44	<	0.47 U	< 0).50 U	<	0.49 B	< 0.42	w	< 0.44 U	<	0.53 UJ		0.48 W	<	0.42 U	<	0.44 W	<	0.43 W	1	0.53 J
Silver		0.73 B	<	0.72 U		0.92 B	< 0	U 08.0	l	1.5	1.8		0.87 B	1	1.7	1	3.6		0.28	<	0.71 U		1.2 B	1	0.94 B
Sodium	l	84.2 B	l	56.1 B		50.1 B	7	6.6 B	1	281 B	152	в	95.7 B		156 B	l	212 B		190 B		226 B		254 B		51.0 B
Thallium	<	0.15 U	<	0.15 U	 <	0.16 U	< 0).17 U	<	0.1 U	< 0.1	υ	< 0.15 U	<	0.1 U	<	0.1 U	<	0.1 U	<	0.15 U	<	0.14 U	<	0.16 U
Vanadium		21.9	ł	10.7	•	22.1	j 1	7.6	l	28.7 J	31.5	J	22.8	1	30.0 J		51.7 J		35.1 J	l	4.4 B		25.0		17.5
Zinc		85.8	l	111		7.0		147	ŀ	796	737		143	1	883	l	98.1		501	1	42.1 J	1	244 J		97.0 J
Cyanide	<	0.19 U	<	0.21 U	<	0.22 U	< 0).23 U	<	0.20 U	< 0.20	υl	< 0.21 W	<	0.20 U	<	0.20 U	<	0.20 U	}	1.8 J	1	0.56 J		0.36 J

Carbon Disulfide	<	0.0030 U	<	0.0030 U	<	0.0029 U	٧	0.0028 U	<	0.0028 U	<	0.0029 U	٧	0.0033 U	<	0.0028 U	Υ.	0.0038 UJ	٨	0.004
1,1-Dichloroethene	ı	0.0009 J	<	0.0030 J		0.0011 J		0.0014 J		0.0010 J	t	0.0010 J		0.0017	ĺ	0.0011 J	L	0.0012 J	-	0.004
1,1-Dichloroethane	<	0.0030 U	<	0.0030 U	<	0.0029 U	<	0.0028 U	 <	0.0028 U	<	0.0029 U	<	0.0033 U	<	0.0028 U	<	0.0038 UJ	ا کا	0.004
1,2-Dichloroethene (total)	<	0.0030 U	<	0.0030 U	<	0.0029 U	<	0.0028 U	 <	0.0028 U	<	0.0029 U	<	0.0033 U	<	0.0028 U	<	0.0038 UJ	12	0.004
Chloroform	<	0.0030 U	<	0.0030 U	<	0.0029 U	<	0.0028 U	<	0.0028 U	<	0.0029 U	<	0.0033 U	-	0.0028 U	-	0.0038 UJ		0.004
1,2-Dichloroethane	<	0.0030 U	<	0.0030 U	 <	0.0029 U	<	0.0028 U	<	0.0028 U	<	0.0029 U	<	0.0033 U	<	0.0028 U		0.0038 UJ	-	0.004
2-Butanone		0.0069 UJ		0.0060 W		0.0053 UJ		0.0044 UJ		0.0102 UJ		0.0061 UJ		0.0070 UJ		0.0068 UJ		0.0082 UJ		0.017
1,1,1-Trichloroethane	<	0.0030 U	<	0.0030 U	₹	0.0029 U	<	0.0028 U	<	0.0028 U	~	0.0029 U	<	0.0033 U	<	0.0028 U	<	0.0038 UJ	~	0.004
Carbon Tetrachloride	<	0.0030 U	<	0.0030 U	<	0.0029 U	<	0.0028 U	<	0.0028 U	<	0.0029 U	<	0.0033 U	<	0.0028 U		0.0038 UJ	Į,	0.004
Bromodichloromethane	<	0.0030 U	<	0.0030 U	 <	0.0029 U	<	0.0028 U	 <	0.0028 U	<	0.0029 U	<	0.0033 U	<	0.0028 U	<	0.0038 UJ	-	0.004
1,2-Dichloropropane	<	0.0030 U	<	0.0030 U	<	0.0029 U	<	0.0028 U	<	0.0028 U	<	0.0029 U	<	0.0033 U	<	0.0028 U	l<	0.0038 UJ	-	0.004
cis-1,3-Dichloropropene	<	0.0030 U	<	0.0030 U	<	0.0029 U	<	0.0028 U	<	0.0028 U	<	0.0029 U	<	0.0033 U	<	0.0028 U	Į.	0.0038 UJ	Į,	0.004
Trichloroethene	<	0.0030 U	<	0.0030 U	<	0.0029 U	<	0.0028 U	 <	0.0028 U	<	0.0029 U	<	0.0033 U	<	0.0028 U	١٠	0.0038 UJ	Ž	0.004
Dibromochloromethane	<	0.0030 U	<	0.0030 U	<	0.0029 U	<	0.0028 U	<	0.0028 U	<	0.0029 U	<	0.0033 U	<	0.0028 U	اج ا	0.0038 UJ	Į,	0.004
1,1,2-Trichloroethane	<	0.0030 U	<	0.0030 U	<	0.0029 U	<	0.0028 U	<	0.0028 U	<	0.0029 U	<	0.0033 U	<	0.0028 U	Į.	0.0038 UJ	Į,	0.004
Benzene	<	0.0030 U	<	0.0030 U	<	0.0029 U	<	0.0028 U	 <	0.0028 U	<	0.0029 U	<	0.0033 U	<	0.0028 U		0.0038 UJ	Į,	0.004
trans-1,3-Dichloropropene	<	0.0030 U	<	0.0030 U	<	0.0029 U	۷.	0.0028 U	<	0.0028 U	<	0.0029 U	k	0.0033 U	<	0.0028 U	l-	0.0038 UJ	,	0.0042
Bromoform	<	0.0030 U	<	0.0030 U	<	0.0029 ป	<	0.0028 U	 <	0.0028 U	<	0.0029 U	<	0.0033 U	<	0.0028 U		0.0038 UJ	<	0.0042
4-Methyl-2-Pentanone	<	0.0030 U	<	0.0030 U	<	0.0029 U	<	0.0028 U	<	0.0028 U	<	0.0029 W	<	0.0033 UJ	<	0.0028 U	<	0.0038 UJ	<	0.0042
2-Hexanone	<	0.0030 U	<	0.0030 ∪	<	0.0029 U	<	0.0028 U	<	0.0028 U	<	0.0029 W	<	0.0033 UJ	<	0.0028 U	<	0.0038 LU	<	0.004
Tetrachloroethene	 <	0.0030 U	<	0.0030 U	<	0.0029 U	<	0.0028 U	<	0.0028 U	<	0.0029 U	<	0.0033 U	<	0.0028 U	<	0.0038 UJ	<	0.0042
1,1,2,2-Tetrachloroethane	<	0.0030 U	<	0.0030 U	<	0.0029 U	<	0.0028 U	 <	0.0028 U	<	0.0029 U	<	0.0033 U	<	0.0028 U	l<	0.0038 UJ	<	0.0042
Toluene	<	0.0030 U	<	0.0030 U	<	0.0029 U	<	0.0028 U	<	0.0028 U	l	0.0010 J	<	0.0033 U	<	0.0028 U	l	0.0009 J		0.0042
Chlorobenzene	<	0.0030 U	<	0.0030 U	<	0.0029 U	<	0.0028 U	<	0.0028 U	<	0.0029 U	<	0.0033 U	<	0.0028 U	<	0.0038 UJ	<	0.0042
Ethylbenzene	<	0.0030 U	<	0.0030 U	<	0.0029 U	<	0.0028 U	<	0.0028 U	<	0.0029 U	<	0.0033 U	<	0.0028 U	ŀ	0.0012 J		0.0039
Styrene	<	0.0030 U	<	0.0030 U	<	0.0029 U	<	0.0028 U	<	0.0028 U	<	0.0029 U	<	0.0033 U	<	0.0028 U	<	0.0038	<	0.0042
Xylene (total)	<_	0.0030 U	<	0.0030 U	<	0.0029 U	<	0.0028 U	<	0.0028 U	1	0.0007 J	<	0.0033 U	<	0.0028 U	I	0.0011 J	1	0.0271

QZ-99 is a duplicate sample of AB-SS1D All values in mg/kg

Carbon Disulfide	<	0.0029 U		5.190	٧	0.0029 じ	<	0.0027 U	<	0.0020 U	<	0.0020 U	٧.	0.0020 U	\ \	0.0020
1,1-Dichloroethene	<	0.0029 U	<	5.190 U	1	0.0010 J	1	0.0011 J	<.	0.0020 U	<	0.0020 U	<	0.0020 U	-	0.0020
1,1-Dichloroethane	<	0.0029 U	<	5,190 U	<	0.0029 U	<	0.0027 U	<	0.0020 U	<	0.0020 U	 <	0.0020 U		0.0020
1,2-Dichloroethene (total)	<	0.0029 U	1	1.557 J	<	0.0029 U	<	0.0027 U	 <	0.0020 U	<	0.0020 U	<	0.0020 U	Į,	0.0020
Chloroform	<	0.0029 U	<	5.190 U	<	0.0029 U	<	0.0027 U	<	0.0020 U	<	0.0020 U	<	0.0020 U	٦	0.0020
1,2-Dichloroethane	<	0.0029 U	<	5.190 U	<	0.0029 U	<	0.0027 U	<	0.0020 U	<	0.0020 U	<	0.0020 U		0.0020
2-Butanone		0.0066 UJ		5.190		0.0060 UJ		0.0067 UJ	<	0.0380		0.0220	<	0.0020 U	<	0.0020
1,1,1-Trichloroethane	<	0.0029 U		5.190	<	0.0029 U	<	0.0027 U	 <	0.0020 U	<u></u>	0.0020 U	7<	0.0020 U	<	0.0020
Carbon Tetrachloride	<	0.0029 U	<	5.190 U	<	0.0029 U	<	0.0027 U	<	0.0020 U	 <	0.0020 U	<	0.0020 U	<	0.0020
Bromodichloromethane	<	0.0029 U	<	5.190 U	<	0.0029 U	<	0.0027 U	<	0.0020 U	 <	0.0020 U	<	0.0020 U	<	0.0020
1,2-Dichloropropane	<	0.0029 U	<	5.190 U	<	0.0029 U	<	0.0027 U	<	0.0020 U	<	0.0020 U	<	0.0020 U	<	0.0020
cis-1,3-Dichloropropene	<	0.0029 U	<	5.190 U	<	0.0029 U	<	0.0027 U	<	0.0020 U	<	0.0020 U	<	0.0020 U	l<	0.0020
Trichloroethene	<	0.0029 U		2.076 J	<	0.0029 U	<	0.0027 U	<	0.0020 U	<	0.0020 U	<	0.0020 U	<	0.0020
	<	0.0029 U	<	5.190 U	<	0.0029 U	<	0.0027 U	<	0.0020 U	<	0.0020 U	<	0.0020 U	<	0.0020
1,1,2-Trichloroethane	<	0.0029 U	<	5.190 U	<	0.0029 U	<	0.0027 U	 <	0.0020 U	<	0.0020 U	<	0.0020 U	<	0.0020
Benzene	<	0.0029 U	<	5.190 U	<	0.0029 U	<	0.0027 U	<	0.0020 U	<	0.0020 U	<	0.0020 U	k	0.0020
trans-1,3-Dichloropropene	<	0.0029 U	<	5.190 U	<	0.0029 U	<	0.0027 U	<	0.0020 U	<	0.0020 U	<	0.0020 U	-	0.0020
	<	0.0029 U	<	5.190 U	<	0.0029 U	<	0.0027 U	<	0.0020 ป	<	0.0020 U	<	0.0020 U	<	0.0020
4-Methyl-2-Pentanone	<	0.0029 UJ	<	5.190 U	<	0.0029 UJ	<	0.0027 UJ	<	0.0020 U	<	0.0020 U	<	0.0020 U	l<	0.0020
	<	0.0029	<	5.190 U	<	0.0029	<	0.0027	<	0.0020 U	<	0.0020 U	<	0.0020 U	<	0.0020
	<	0.0029 U	<	5.190 U	ŀ	0.0016 J	<	0.0027 U	<	0.0020 U	<	0.0020 U	<	0.0020 U	<	0.0020
1,1,2,2-Tetrachloroethane	<	0.0029 U	<	5.190 U	<	0.0029 U	<	0.0027 U	<	0.0020 U	<	0.0020 U	<	0.0020 U	<	0.0020
Toluene		0.0006 J		3.114 J		0.0014 J	ŀ	0.0014 J	<	0.0020 U	•	0.0017 J	<	0.0020 U	<	0.0020
	<	0.0029 U	<	5.190 U	<	0.0029 U	<	0.0027 U	<	0.0020 U	<	0.0020 U	<	0.0020 U	<	0.0020
	<	0.0029 U		1.557 J		0.0060	٧	0.0027 U	<	0.0020 ぜ	<	0.0020 U	<	0.0020 U	<	0.0020
Styrene	<		<	5.190 U	<	0.0029 U	<	0.0027 U	<	0.0020 U	<	0.0020 U	<	0.0020 U	<	0.0020
Xylene (total)		0.0063	L	10.640		0.0155		L e000.0	<	0.0020 U	<	0.0020 U	<	0.0020 U	<	0.0020

QZ-99 is a duplicate sample All values in mg/kg

2-Methylphenol	<	0.412 U	<	0.407 U	<	0.397 U	<	0.388 U	<	0.388 U	<	0.397 U	<	0,469 U	<	0.402 U	<	0.513 U	<	0.606 U	<
2,2'-oxybis(1-Chloropropane)	<	0.412 U	[0.407	<	0.397 U	<	0.388 U	<	0.388 U	~	0.397 U	<	0.469 U	<	0.402 U	<	0.513 U	2	0.606 U	ξ.
	~	0.412 U	ξ.	0.407 U	2	0.397 U	<	0.388 U	<	0.388 U	ζ.	0.397 U	<	0.469 U	<	0.402 U	<	0.513 U	~	0.606 U	\
	\ <	0.412 U	ζ.	0.407 U	<	0.397 U	~	0.388 U	<	0.388 U	ζ.	0.397 U	1	0.469 U	Į.	0.402 U	 	0.513 U	1	0.606 U	ξ.
P	<	0.412 U	Į,	0.407 U	1	0.397 U	~	0.388 U	\ <u></u>	0.388 U	ļ,	0.397 U	<		<	0.402 U		0.513 U	\ <u>`</u>	0.606 U	1
l		0.412 U	1	0.407 U	<u> </u>	0.397 U	1 -	0.388 U		0.388 U		0.397 U	<	0.469 U 0.469 U	[0.402 U	1.	0.513 U		0.606 U	 <
Isophorone	<		 		<u>'</u>		<		 		 	-	<		 		 <		 		 <
1 '	<	0.412 U	 	0.407 U	 	0.397 U	<	0.388 U	<	0.388 U	 	0.397 U	<	0.469 U	<	0.402 U	 	0.513 U	 	0.606 U	<
l '	<	0.412 U	 	0.407 U	 	0.397 U	<	0.388 U	<	0.388 U	 <	0.397 U	 <	0.469 U	<	0.402 U	 <	0.513 U	 	0.606 U	 <
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	<	0.412 U	 <	0.407 U	<	0.397 U	<	0.388 U	<	0.388 U	 	0.397 U	 <	0.469 U	<	0.402 U	 <	0.513 U	 <	0.606 U	<
1 '	<	0.412 U	 <	0.407 U	<	0.397 U	<	0.388 U	<	0.388 U	 <	0.397 U	<	0.469 U	 	0.402 U	 <	0.513 U	<	0.606 U	<
, ,	<	0.412 U	 <	0.407 U	<	0.397 U	<	0.388 U	<	0.388 U	[<	0.397 U	<	0.469 U	<	0.402 U	 <	0.513 U	 <	0.606 U	 <
Hairia a la	<	0.412 U	 <	0.407 U	<	0.397 U	<	0.388 U	<	0.388 U	 <	0.397 U	<	0.469 U	<	0.402 U	 <	0.513 U	<	0.606 U	<
1 '	<	0.412 U	 <	0.407 U	<	0.397 U	<	0.388 U	<	0.388 U	 <	0.397 U	<	0.469 U	<	0.402 U	 <	0.513 U	<	0.606 U	_<
	<	0.412 U	<	0.407 U	<	0.397 U	<	0.388 U	<	0.388 U	<	0.397 U	<	0.469 U	<	0.402 U	 <	0.513 U	<	0.606	<
	<	0.412 U	 <	0.407 U	<	0.397 U	<	0.388 U	<	0.388 U	<	0.397 U	<	0.469 U	<	0.402 U	 <	0.513 U	<	0.606 U	<
	<	0.412 U	<	0.407 U	<	0.397 U	<	0.388 U	<	0.388 U	 <	0.397 U	<	0.469 U	<	0.402 U	 <	0.513 U	<	0.606 ∪	 <
	<	0.412 U	١<	0.407 U	<	0.397 U	<	0.388 U	<	0.388 U	<	0.397 U	<	0.469 U	<	0.402 U	<	0.513 U	<	0.606 U	[<
· · · · · · · · · · · · · · · · · · ·	<	0.412 U	 <	0.407 U	<	0.397 U	<	0.388 U	<	0.388 U	<	0.397 U	<	0.469 U	<	0.402 U	<	0.513 U	<	0.606 U	 <
	<	0.412 U	<	0.407 U	<	0.397 U	<	0.388 U	<	0.388 U	<	0.397 U	<	0.469 U	<	0.402 U	<	0.513 U	<	0.606 U	 <
1	<	1.029 U	<	1.016 U	<	0.992 U	<	0.969 U	<	0.969 U	<	0.992 U	<	1.174 U	<	1.004 U	<	1.282 U	<	1.515 U	 <
· · · · · · · · · · · · · · · · · · ·	<	0.412 U	<	0.407 U	<	0.397 U	<	0.388 U	<	0.388 U	<	0.397 U	<	0.469 U	<	0.402 U	<	0.513 U	<	0.606 U	<
	<	1.029 U	<	1.016 U	<	0.992 U	<	0.969 U	<	0.969 U	<	0.992 U	<	1.174 U	<	1.004 U	<	1.282 U	<	1.515 U	<
	<	0.412 U	 	0.407 U	<	0.397 U	<	0.388 U	<	0.388 U	<	0.397 U	<	0.469 U	<	0.402 U	<	0.513 U	<	0.606 U	<
1 ' '	<	0.412 U	<	0.407 U	<	0.397 U	<	0.388 U	<	0.388 U	<	0.397 U	<	0.469 U	<	0.402 U	<	0.513 U	<	0.606 U	<
	<	0.412 U	<	0.407 U	<	0.397 U	<	0.388 U	<	0.388 U	<	0.397 U	<	0.469 U	<	0.402 U	<	0.513 U	<	0.606 U	<
1, , , , ,	<	1.029 UJ	 <	1.016 W	<	0.992 UJ	<	0.969 W	<	0.969 W	<	0.992 U	<	1.174 U	<	1.004 W	 <	1.282 W	<	1.515 U	<
	<	0.412 U	<		<	0.397 U	<	0.388 U	<	0.388 U	<	0.397 U	<	0.469 U	<	0.402 U	<	0.513 U	<	0.606 U	<
	<	1.029 U	<	1.016 U	<	0.992 U	<	0.969 U	<	0.969 U	<	0.992 U	<	1.174 U	<	1.004 U	<	1.282 U	<	1.515 U	<
1 '	<	1.029 U	۲		۱<	0.992 U	<	0.969 U	<	0.969 U	<	0.992 U	<	1.174 U	<	1.004 U	 <	1.282 U	<	1.515 U	<
	<	0.412 U	\<	0.407 U	<	0.397 U	<	0.388 U	<	0.388 U	<	0.397 U	<	0.469 U	<	0.402 U	 <	0.513 U	<	0.606 U	 <
	<	0.412 U	<	0.407 U	<	0.397 U	<	0.388 U	<	0.388 U	 <	0.397 U	<	0.469 U	<	0.402 U	١<	0.513 U	<	0.606 U	<
1 ''	<	0.412 U	١<	0.407 U	<	0.397 U	<	0.388 U	<	0.388 U		0.079 J	<	0.469 U	<	0.402 U	<	0.513 U		0.061 J	 <
	<	0.412 U	١<	0.407 U	<	0.397 U	<	0.388 U	<	0.388 U	 <	0.397 U	<	0.469 U	<	0.402 U	<	0.513 U	 <	0.606 U	 <
l	<	0.412 U	<	0.407 U	<	0.397 U	<	0.388 U	<	0.388 U	<	0.397 U	<	0.469 U	<	0.402 U	<	0.513 U	<	0.606 U	<
	<	1.029 U	<	1.016 U	<	0.992 U	<	0.969 U	<	0.969 U	<	0.992 U	<	1.174 U	<	1.004 U	<	1.282 U	<	1.515 U	 <
	<	1.029 U	<	1.016 U	<	0.992 U	<	0.969 U	<	0.969 U	 <	0.992 U	 <	1.174 U	<	1.004 U	 <	1.282 U	<	1.515 U	<
	<	0.412 U	۲	0.407 U	<	0.397 U	<	0.388 U	<	0.388 U	<	0.397 U	 <	0.469 U	<	0.402 U	 <	0.513 U	<	0.606 U	<
	<	0.412 U	 <	0.407 U	۱<	0.397 U	<	0.388 U	<	0.388 U	<	0.397 U	<	0.469 U	<	0.402 U	<	0.513 U	 	0.606 U	<
	<	0.412 U	 <	0.407 U	<	0.397 U	<	0.388 U	<	0.388 U	 <	0.397 U	<	0.469 U	<	0.402 U	 <	0.513 U	<	0.606 U	 <
l-, , l	<	1.029 U	 <	1.016 U	<	0.992 U	<	0.969 U	<	0.969 U	۱<	0.992 U	<	1.174 U	<	1.004 U	١<	1.282 U	١<	1.515 U	 <
	<	0.412 U	 	0.407 U	<	0.397 U		0.039 J	<	0.388 U	<	0.397 U	<	0.469 U	<	0.402 U	 <	0.513 U	١<	0.606 U	<
	<	0.412 U	 <	0.407 U	<	0.397 U	<	0.388 U	<	0.388 U	<	0.397 U	<	0.469 U	<	0.402 U	 <	0.513 U	 <	0.608 U	 <
1	<	0.412 U	 <	0.407 U	<	0.397 U	 <	0.388 U	<	0.388 U	 <	0.397 U	<	0.469 U	<	0.402 U	 <	0.513 U	<	0.606 U	 <
Di-n-butylphthalate		0.123 J	1	0.203 J		0.079 J		0.155 J		0.271 J	<	0.397 U	<	0.469 U		0.201 J	 <	0.513 U	 	0.606 U	1
	<	0.412 U	<	0.407 U	<	0.397 U		0.078 J	<	0.388 U		0.079 J	<	0.469 U	<	0.402 U	<	0.513 U	<	0.606 U	1
Pyrene	<	0.412 U	<	0.407 U	<	0.397 U		0.116 J	<	0.388 U	1	0.040 J	<	0.469 U	<	0.402 U		0.051 J	<	0.606 U	1
Butylbenzylphthalate	<	0.412 U	 <	0.407 U	 <		<	0.388 U	<	0.388 U	<	0.397 U	<	0.469 U	<	0.402 U		0.103 J	<	0.606 U	╛
	<		<	0.407	<		<		<		<		<	0.469 U	<	0.402 W	<	-	<	0.606	<
1 ''	<		 <		<	0.397 U	<	0.388 U	<	0.388 U	<		<	0.469 U	<	0.402 U	<	0.513 U	<	0.606 U	 <
-	<		۲		 <	0.397 U	<	0.388 U	<	0.388 U	<	0.397 U	 <	0.469 U	<	0.402 U	L	0.051 J	<	0.606 U	L
	<	0.412 U	<		<	0.397 U	<	0.388 U	<	0.388 U		1.468	۲,	0.469 U	<	0.402 U		0.718 U	<	0.606 U	
1 - 1	<	0.412 U	۲	0.407 U	<	0.397 U	۲.	0.388 U	<	0.388 U	<		 <	0.469 U	<	0.402 U	<	0.513 U	<	0.606 U	<
	<	0.412 U	 <		<	0.397 U	<	0.388 U	<	0.388 U	<	-	<	0.469 U	<	0.402 U	<	0.513 U	<	0.606 U	<
1 ''	<	0.412 U	 <	0.407 U	 <	0.397 U	<	0.388 U	<	0.388 U	<	0.397 U	<	0.469 U	۲	0.402 U	<	0,513 U	<	0.606 U	 <
	<	0.412 U	۲	0.407 U	 <	0.397 U	<	0.388 U	<	0.388 U	 <	0.397 U	<	0.469 U	۲	0.402 U	<	0.513 U	<	0.606 U	<
1	<	0.412 U	<	0.407 U	<	0.397 U	<	0.388 U	<	0.388 U	<	0.397 U	<	0.469 U	<	0.402 U	<	0.513 U	⋖	0.606 U	<
1 '''	<	0.412 U	<		<	0.397 U	<	0.388 U	<	0.388 U	<	0.397 U	<		<	0.402 U	<	0.513 U	<	0.606 U	<
Benzo(g,h,i)perylene	<	0.412 U	<u> </u>	0.407 U	<	0.397 U	<	0.388 U	< .	0.388 U	<u> </u>	0.397 U	<	0.469 U	<	0.402 U	<u> </u>	0.513 U	<	0.606 U	<

2-Methylphenol	<	0.407 U	<	9.363 U	<	0.402 U	<	0.392 U
2,2'-oxybis(1-Chloropropane)	<	0.407 U	1	9.363 U	~	0.402 U	<	0.392 U
4-Methylphenol	<	0.407 U	<	9.363 U	~	0.402 U	<	0.392 U
N-Nitroso-di-n-propylamine	<	0.407 U	<	9.363 U	<	0.402 U	2	0.392 U
Hexachoroethane	<	0.407 U	-	9.363 U	~	0.402 U	<	0.392 U
Nitrobenzene	<	0.407 U		9.363 U	<	0.402 U	<	0.392 U
Isophorone	\ <u></u>	0.407 U	~	9.363 U	[0.402 U	[0.392 U
2-Nitrophenoi	\ <u></u>	0.407 U	<	9.363 U	2	0.402 U	<	0.392 U
2,4-Dimethylphenol	<	0.407 U	<	9.363 U	[0.402 U	<	0.392 U
bis(2-chloroethoxy)methane	<	0.407 U	~	9,363 U	<	0.402 U	<	0.392 U
2,4-Dichlorophenol	<	0.407 U		9.363 U	`	0.402 U	<	0.392 U
1,2,4-Trichlorobenzene	<	0.407 U		9.363 U	<	0.402 U	<	0.392 U
Naphthalene		0.650 U		9.363 U	ζ.	0.402 U	<	0.392 U
4-Chloroaniline	<	0.407 W	<	9.363 UJ	[0.402 U	<	0.392 U
Hexachlorobutadiene	\ <u>`</u>	0.407 U	~	9.363 U	<	0.402 U	<	0.392 U
4-Chloro-3-methylphenol	<	0.407 U	`	9.363 U	<	0.402 U	<	0.392 U
2-Methylnaphthalene	<	0.407 U	`	1.873 J	<	0.402 U	-	0.392 U
Hexachlorocyclopentadiene	 <	0.407 U	k	9.363 U	<	0.402 U	<	0.392 U
2,4,6-Trichlorophenol	k	0.407 U	k	9.363 U	<	0.402 U	<	0.392 U
2,4,5-Trichlorophenol	<	1.016 U	-	23.408 U	<	1.004 U	ζ.	0.980 U
2-Chloronaphthalene	<	0.407 U	<	9.363 U	<	0.402 U	<	0.392 U
2-Nitroaniline	<	1.016 U		23.408 U	<	1.004 U	<	0.980 U
Dimethlylphthalate	<	0.407 U	<	9.363 U	<	0.402 U	<	0.392 U
Acenaphthylene	<	0.407 U	<	9.363 U	<	0.402 U	<	0.392 U
2,6-Dinitrotoluene	 <	0.407 U	<	9.363 U	 	0.402 U	<	0.392 U
3-Nitroaniline	<	1.016 U	<	23.408 U	<	1.004 LU	<	0.980 UJ
Acenaphthene	<	0.407 U	<	9.363 U	<	0.402 U	<	0.392 U
2,4-Dinitrophenol	<	1.016 U	<	23.408 U	<	1.004 U	<	0.980 U
4-Nitrophenol	<	1.016 U	<	23.408 U	<	1.004 U	<	0.980 U
Dibenzofuran	<	0.407 U	<	9.363 U	<	0.402 U	<	0.392 U
2,4-Dinitirotoluene	<	0.407 U	<	9.363 U	<	0.402 U	<	0.392 U
Diethylphthalate	<	0.407 U	<	9.363 U	<	0.402 U	<	0.392 U
4-Chlorophenyl-phenylether	<	0.407 U	<	9.363 U	<	0.402 U	<	0.392 U
Fluorene	<	0.407 U	<	9.363 U	<	0.402 U	<	0.392 U
4-Nitroanillne	<	1.016 U	<	23.408 U	<	1.004 U	<	0.980 U
4,6-Dinitro-2-methyphenol	<	1.016 U	<	23.408 U	< −	1.004 U	<	0.980 U
N-Nitrosodiphenylamine (1)	<	0.407 U	<	9.363 U	<	0.402 U	<	0.392 U
4-Bromophenyl-phenylether	<	0.407 U	<	9.363 U	<	0.402 U	<	0.392 U
Hexachlorobenzene	<	0.407 U	<	9.363 U	<	0.402 U	<	0.392 U
Pentachlorophenol	<	1.016 U	<	23.408 U	<	1.004 U	<	0.980 U
Phenanthrene	<	0.407 U	<	9.363 U	<	0.402 U	<	0.392 U
Anthracene	<	0.407 U	<	9.363 U	<	0.402 U	<	0.392 U
Carbazole	<	0.407 U	<	9.363 U	<	0.402 U	<	0.392 U
Di-n-butylphthalate	<	0.407 U	<	9.363 U	<	0.402 U		0.078 J
Fluoranthene	<	0.407 U	<	9.363 U	<	0.402 U	<	0.392 U
Pyrene	<	0.407 U		3.745 J	 <	0.402 U	<	0.392 U
Butylbenzylphthalate	<	0.407 U	<	9.363 U	<	0.402 U	<	0.392 U
3,3'-Dichlorobenzidine	<		<	9.363 W	<	0.402 UJ	<	0.392 W
Benzo(a)anthracene	<	0.407 U	<	9.363 U	<	0.402 U	<	0.392 U
Chrysene	<	0.407 U	<	9.363 U	<_	0.402 U	<	0.392 U
bis(2-ethylhexyl)phthalate	1	3.171	<	9.363 U		0.402 U		0.392 U
Di-n-octylphthalate	<	0.407 U	۲	9.363 U	<	0.402 U	<	0.392 U
Benzo(b)fluoranthene	<	0.407 U	<	9.363 U	<	0.402 U	<	0.392 U
Benzo(k)fluoranthene	<	0.407 U	<	9.363 U	<	0,402 U	<	0.392 U
Benzo(a)pyrene	<	0.407 U	٧	9.363 U	<	0.402 U	<	0.392 U
Indeno(1,2,3-cd)pyrene	<	0.407 U	<	9.363 U	<	0.402 U	<	0.392 U
Dibenz(a,h)anthracene	<	0.407 U	<		<	0.402 U	<	0.392 U
Benzo(g,h,i)perylene	<	0.407 U	<_	9.363 U	<	0.402 U	<u> </u>	0.392 U

heptachlor epoxide	<	0.0020 U	<	0.0020 U	<	0.0020 U	<	0.0019 U	<	0.0019 U	<	0.0020 U	<	0. 0023 U	<	0.0020 U	<	0.0025 U
endosulfan l	. <	0.0020 U	<	0.0020 U	<	0.0020 U	<	0.0019 U	<	0.0019 U	<	0.0020 U	<	0.0023 U	<	0.0020 U	<	0.0025 U
dieldrin	<	0.0041 UJ	<	0.0041 UJ	<	0.0040 UJ	<	0.0038 UJ	<	0.0039 UJ	<	0.0040 U	<	0.0047 U	<	0.0040 UJ	<	0.0051 U
4,4'-DDE	<	0.0041 U	<	0.0041 U	<	0.0040 U	<	0.0038 U	<	0.0039 U	<	0.0040 U	<	0.0047 U	<	0.0040 U	<	0.0051 U
Endrin	<	0.0041 UJ	<	0.0041 UJ	<	0.0040 UJ	<	0.0038 UJ	<	0.0039 UJ	<	0.0040 U	<	0.0047 U	<	0.0040 WJ	<	0.0051 U
Endosulfan II	<	0.0041 U	<	0.0041 U	<	0.0040 U	<	0.0038 U	<	0.0039 U	 <	0.0040 U	<	0.0047 U	<	0.0040 U	<	0.0051 U
4,4'-DDD	<	0.0041 U	<	0.0041 U	<	0.0040 U	 <	0.0038 U	<	0.0039 U	 <	0.0040 U	<	0.0047 U	<	0.0040 U	<	0.0051 U
Endosulfan Sulfate	<	0.0041 U	<	0.0041 U	<	0.0040 U	 <	0.0038 U	<	0.0039 U	<	0.0040 U	 <	0.0047 U	<	0.0040 U		0.0029 J
4,4'-DDT	<	0.0041 U	<	0.0041 U	<	0.0040 U	1	0.0089	<	0.0039 U	 <	0.0040 U	<	0.0047 U	<	0.0040 U		0.0220
Methoxychlor	<	0.0200 U	<	0.0200 U	<	0.0200 U	<	0.0190 U	<	0.0190 U	 <	0.0200 U	-	Ų	<	0.0200 U	<	0.0250 U
Endrin Ketone	<	0.0041 U	<	0.0041 U	<	0.0040 U	<	0.0038 U	<	0.0039 U	<	0.0040 U	<	0.0047 U	<	0.0040 U	<	0.0051 U
Endring aldehyde	<	0.0041 U	<	0.0041 U	<	0.0040 U	<	0.0038 U	<	0.0039 U	 <	0.0040 U	<	0.0047 U	<	0.0040 U		0.0034 J
alpha-chiordane	<	0.0020 U	<	0.0020 U	<	0.0020 U	<	0.0019 U	<	0.0019 U	<	0.0020 U	<	0.0023 U	<	0.0020 U	<	0.0025 U
gamma-chlordane	<	0.0020 U	<	0.0200 U	<	0.0020 U	<	0.0019 U	<	0.0019 U	 <	0.0020 U	 <	0.0023 U	<	0.0020 U	<	0.0025 U
Toxaphene	<	0.2050 U	<	0.2030 U	<	0.1980 U	<	0.1920 U	<	0.1930 U	<	0.1980 U	<	0.2340 U	<	0.1990 U	<	0.2560 U
Aroclor 1016	<	0.0410 U	<	0.0410 U	<	0.0400 U	<	0.0380 U	<	0.0390 U	<	0.0400 U	<	U	<	0.0400 U	<	0.0510 U
Aroclor 1221	<	0.8200 U	<	0.0810 U	<	0.0790 U	<	0.0770 U	<	0.0770 U	<	0.0790 U	<	0.0940 U	<	0.0800 U	<	0.1020 U
Arocior 1232	<	0.0410 U	<	0.0410 U	<	0.0400 U	<	0.0380 U	<	0.0390 U	<	0.0400 U	<	U	<	0.0400 U	<	0.0510 U
Aroclor 1242	<	0.0410 U	<	0.0410 U	<	0.0400 U	<	0.0380 U	<	0.0390 U	<	0.0400 U	<	U	<	0.0400 U	1	0.2830
Arocior 1248	<	0.0410 U	<	0.0410 U	<	0.0400 U	<	0.0380 U	<	0.0390 U	<	0.0400 U	<	U	<	0.0400 U	<	0.0510 U
Amçlor 1254	<_	0.0410 U	<	0.0410 U	<	0.0400 U	<	0.0380 U	<	0.0390 U	<	0.0400 U	<	U	<	0.0400 U	<	0.0510 U
or 1260		0.0750	<	0.0410 U	<	0.0400 U	<	0.0380 U	<	0.0390 U	 <	0.0400 U	<	U	<	0.0400 U	1	0.2320

heptachlor epoxide	<	0.0020 U	<	0.0019 U	<	0.0020 U	<	0.0020 U
endosulfan l	<	0.0020 U	<	0.0019 U	<	0.0020 U	<	0.0020 U
dieldrin	<	0.0041 U	<	0.0037 U	<	0.0040 U	<	0.0040 U
4,4'-DDE	<	0.0041 U	<	0.0037 U	<	0.0040 U	<	0.0040 U
Endrin	<	0.0041 U	<	0.0037 U	ĺ	0.0085	<	0.0040 U
Endosulfan II	<	0.0041 U	<	0.0037 U	<	0.0040 U	<	0.0040 U
4,4'-DDD	<	0.0041 U	<	0.0037 U	<	0.0040 U	<	0.0040 U
Endosulfan Sulfate	<	0.0041 U	<	0.0037 U	<	0.0040 U	<	0.0040 U
4,4'-DDT	<	0.0041 U	<	0.0037 U	<	0.0040 U	<	0.0040 U
Methoxychior	<	0.0200 U	<	0.0190 U	<	0.0200 U	<	0.0200 U
Endrin Ketone	<	0.0041 U	<	0.0037 U	<	0.0040 U	<	0.0040 U
Endring aldehyde	<	0.0041 U	<	0.0037 U	<	0.0040 U	<	0.0040 U
alpha-chiordane	1	0.0014 J	1	0.1290	ı	0.0650	<	0.0020 U
gamma-chlordane	<	0.0020 U	1	0.0710	1	0.1280	<	0.0020 U
Toxaphene	<	0.2030 U	 <	0.1870 U	<	0.2010 U	<	0.1960 U
Aroclor 1016	<	0.0410 U	7	0.0370 U	<	0.0400 U	<	0.0390 U
Aroclor 1221	<	0.0810 U	[<	0.0750 U	<	0.0800 U	<	0.0780 U
Aroclor 1232	<	0.0410 U	<	0.0370 U	<	0.0400 U	<	0.0390 U
Aroclor 1242	<	0.0410 U	<	0.0370 U	<	0.0400 U	<	0.0390 U
Aroclor 1248	<	0.0410 U	<	0.0370 U	<	0.0400 U	<	0.0390 U
Aroclor 1254	<	0.0410 U	<	0.0370 U	<	0.0400 U	<	0.0390 U
Aroclor 1260	<	0.0410 U	<	0.0370 U	 <	0.0400 U	<	0.0390 U

100.	J. 100 Co. 1				0,11		9.10 D	Т	O. 10 D		V. 10 D	1	0.10		U.LU D	1	V. 11 &		V. T I U		0,70	ł	0.00		0.44.0	,
Çac	dmium	<	0.82 U	<	0.83 U	<	0.75 U	1	1.1	<	0.78 U	<	0.8 U	<	0.98 U		1.9		8.2	<	1.2 U	l	5.3 J	1	2.9 J	<
Cak	lcium		498 B	l	270 B	ł	128 B	1	2,220	l	235	ł	1,589		1,330		7,978		7,374		1,743	ł	7,066 J	l	2,429 J	
Chr	romium		12.4 J	l	19.0 J	ļ	6.3 J	1	13.7 J	Į.	5.8 J	1	9.0		6.3	ļ	44.4 J		544		12.5	i	49.9 J	•	28.3 J	
Cot	balt		2.0 B	l	1.7 B	1	1.6 B	l	6.9 B	l	1.2 B]	1.6 B		1.6 B		15.3		13.0		5.8 B		5.71 B	1	7.3	
Cor	pper		3.3 B	l	1.8 B	l	1.6 B	l	17.7	ŀ	2.0 B		3.0 B		1.8 B		19.4		224		2.5 B		27.5 J		56.4 J	
Iron	1		3,085 J		3,279 J	l	3,167 J	l	14,467 J	1	3,130 J		3,584		2,646	1	25,750 J		36,830		4,260		19,474 J		37,377 J	
Lea	ıd		1.3 J		1.7 J		1.7 J	ı	20.4 J		1.1 J		22.9		1.8		20.2 J		637		2.7		179 J		387 J	1
Mag	gnesium		673 B	ı	664 B	l	626 B	l	3,413]	726 B		965		832 B	ŀ	5,689		4,669		967 B		2,397		2,537	
Mai	nganese		26.8 J	1	26.0 J	l	21.7 J	ı	281 J	1	25.5 J		38.5		30.4		178 J		320		32.5		178 J		325 J	
Mei	rcury		0.12	<	0.10 ป	<	0.10 U	<	0.11 U	<	0.08 U	<	0.105 U	<	0.128 U		0.09		1.0	<	0.179 U		0.29 J	ŀ	0.12 J	<
Nic	kel		1.8 B	1	0.83 B		1.3 B	l	6.0 B	l	1.1 B		8.6		4.1 B	Г	4.7 B		51.4		6.1 B		13.2 J		21.0 J	
Pot	assium		73.2 B	<	59.3 U	ł	135 B	l	331 B	l	160 B		266 B		140 B	1	2,104		1,066		146 B		598 B		1,145	
Sek	enium	<	0.50 U	<	0.51 U	[<	0.50 U	l	0.48 B	l	0.48 B	<	0.47 UJ	<	0.54 W	<	0.49 U		1.6		2.2	<	0.48 W		0.48 J	<
Silv	er er	<	0.82 U	<	0.83 U	<	0.75 U	<	0.76 U	<	0.78 U	<	0.80 U	<	0.98 U	ļ	1.68 B		2.7	<	1.2 U		2.0	<	0.73 U	<
Soc	tium	<	40.5 U	<	41.3 U	 <	37.0 U	l	59.8 B	<	38.6 U		91.7 B		112 B		195 B		317 B	i	225 B		354 B		235 B	 <
The	dlium	<	0.17 U	<	0.17 U	 <	0.17 U	<	0.16 U	<	0.16 U	<	0.2 U	<	0.2 U	<	0.16 U	<	0.2 U	<	0.2 U	<	0.16 U	<	0.15 U	<
Van	nadium		4.2 B		4.8 B	l	5.1 B	l	25.1	l	4.7 B	l	6.6 J		6.7 J		44.9		32.6 J	1	20.4 J		17.4		45.2	
Zind	C		7.3		6.8	l	6.4	ı	48.0		6.5		23.9		9.0		127		1,349		11.1		103 J		182 J	
Cya	anide	<	0.22 U	<	0.22 U	<	0.21 U	<	0.21 U	<	0.21 U	<	0.20 U	<	0.20 U	<	0.23 U	<	0.30 U	<	0.40 U		0.77 J	l	0.20 J	<

Carbon Disutfide	<	2.0 U	<	2.0 U	<	50.0	<	20.0	<	2.0 U	<	2.0 U	<	2.0 U	٧	2.0 U	٧	2.0
1,1-Dichloroethene	<	2.0 ∪	<	2.0 U	<	50.0	<	20.0	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0
1,1-Dichloroethane	<	2.0 ∪	<	2.0 U	<	50.0	<	20.0	<	2.0 ∪	<	2.0 U	 <	2.0 U	<	2.0 U	<	2.0
1,2-Dichloroethene (total)	ł	4.0	<	2.0 U	<	50.0	<	20.0	<	2.0 ∪	<	2.0 U	1	1.3 J	1	1.7 J		3.7
Chloroform	<	2.0 U	<	2.0 U	<	50.0	<	20.0	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0
1,2-Dichloroethane	<	2.0 U	<	2.0 ₩	<	50.0	<	20.0	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0
2-Butanone		4.2 U	<	2.0 U		84.3		30.7		3.7 U	<	2.0 ∪		3.3 U	<	2.0 U		3.0
1,1,1-Trichloroethane	<	2.0 U	<	2.0 U	<	50.0	<	20.0	<	2.0 U	<	2.0 U	<	2.0 ₩	<	2.0 U	<	2.0
Carbon Tetrachloride	<	2.0 U	<	2.0 U	<	50.0	<	20.0	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0
Bromodichloromethane	<	2.0 U	[<	2.0 U	<	50.0	<	20.0	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0
1,2-Dichloropropane	<	2.0 U	<	2.0 U	<	50.0	<	20.0	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0
cis-1,3-Dichloropropene	<	2.0 U	<	2.0 U	<	50.0	<	20.0	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0
Trichloroethene	<	2.0 U	[<	2.0 U		363.0		144.0	<	2.0 U	<	2.0 U	ŀ	4.4		3.0	l	1.1
Dibromochloromethane	<	2.0 U	<	2.0 U	<	50.0	<	20.0	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0
1,1,2-Trichloroethane	<	2.0 U	<	2.0 U	<	50.0	<	20.0	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0
Benzene	<	2.0 U	<	2.0 U	<	50.0	<	20.0	<	2.0 U	<	2.0 U	<	2.0 U		1.1 J	<	2.0
trans-1,3-Dichloropropene	<	2.0 U	<	2.0 U	⋖	50.0	<	20.0	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0
Bromoform	<	2.0 U	<	2.0 U	<	50.0	<	20.0	<	2.0 U	<	2.0 ∪	<	2.0 U	<	2.0 U	<	2.0
4-Methyl-2-Pentanone	 <	2.0 U	<	2.0 U	<	50.0	<	20.0	<	2.0 U	<	2.0 ∪	<	2.0 U	<	2.0 Ų	<	2.0
2-Hexanone	<	2.0 U	<	2.0 U	<	50.0	<	20.0	<	2.0 U	<	2.0 Ų	<	2.0 U	<	2.0 U	<	2.0
Tetrachloroethene	<	2.0 U	<	2.0 U		21.2		20.7	<	2.0 U	<	2.0 U		0.9 J		1.8 J		1.2
1,1,2,2-Tetrachloroethane	<	2.0 U	<	2.0 U	<	50.0	<	20.0	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0
Toluene	<	2.0 U	<	2.0 U	<	50.0	<	20.0	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0
Chlorobenzene	 <	2.0 U	<	2.0 U	<	50.0	<	20.0	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0
Ethylbenzene	<	20 U	<	2.0 U	<	50.0	<	20.0	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0
Styrene	 <	2.0 U	<	2.0 U	<	50.0	<	20.0	<	2.0 U	<	2.0 U	 <	2.0 U	 <	2.0 U	<	2.0
Xylene (total)	 <	2.0 U	<	2.0 U	<	50.0	<	20.0	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0
Sum of BTEX	<	2.0 U	<	2.0 U	<	50.0	<	20.0	<	2.0 U	<	2.0 U	<	2.0 U	1	1.1 J	<	2.0

All values in ug/L

Carbon Disulfide	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U
1,1-Dichloroethene	<	2.0 U	<	2.0 U	<	2.0 U	< .	2.0 U	<	2.0 U	<	2.0 U
1,1-Dichloroethane	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U
1,2-Dichloroethene (total)	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U
Chloroform	<	2.0 ∪	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 Ų	<	2.0 U
1,2-Dichloroethane	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U
2-Butanone		4.2 U		3.9 U		4.1 U		4.4 U		3.7 U		5.9 U
1,1,1-Trichloroethane	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U	< −	2.0 U	<	2.0 U
Carbon Tetrachioride	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U
Bromodichloromethane	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U
1,2-Dichloropropane	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U
cis-1,3-Dichloropropene	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U
Trichioroethene	<	2.0 U	<	2.0 U	 <	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U
Dibromochloromethane	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U	 <	2.0 U
1,1,2-Trichloroethane	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U
Benzene	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U
trans-1,3-Dichloropropene	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U
Bromoform	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U
4-Methyl-2-Pentanone	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U
2-Hexanone	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U
Tetrachloroethene	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U
1,1,2,2-Tetrachloroethane	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U
Toluene	<	2.0 U	<	2.0 U	<	2.0 U	 <	2.0 U	<	2.0 U	<	2.0 U
Chlorobenzene	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 ป
Ethylbenzene	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U
Styrene	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U
Xylene (total)	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U
Sum of BTEX	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U	<	2.0 U

All values in ug/L

2-Methylphenol	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10
2,2'-oxybis(1-Chloropropane)	1	1 J	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10
4-Methylphenol	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10
N-Nitroso-di-n-propylamine	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10
Hexachoroethane	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	 <	10 U	<	10
Nitrobenzene	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10
Isophorone	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10
2-Nitrophenol	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10
2,4-Dimethylphenol	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10
bis(2-chloroethoxy)methane	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	 <	10 U	<	10 U	<	10 U	<	10
2,4-Dichlorophenol	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	 <	10 U	<	10
1,2,4-Trichlorobenzene	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10
Naphthalene	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10
4-Chloroaniline	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	[<	10 U	<	10 U	<	10 U	<	10
Hexachlorobutadiene	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	 <		<	10
4-Chloro-3-methylphenol	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<		<	10
2-Methylnaphthalene	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10
Hexachlorocyclopentadiene	<	10 W	<	10 UJ	<	10 W	<	10 W	<	10 W	<	10 W	<	10 W	<	10 W	<	10
2,4,6-Trichlorophenol	<	10 U	<	10 U	<	10 U	[<	10 U	<	10 U	<	10 U	<	10 U	<		<	10
2,4,5-Trichlorophenol	<	25 U	<	25 U	 <	25 U	<	25 U	<	25 U	<	25 U	<	25 U	 <		<	25
2-Chloronaphthalene	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<		<	10
2-Nitroaniline	<	25 U	<	25 W	 <	25 U	<	25 U	<	25 U	<	25 U	<	25 U	 <		<	25
Dimethlylphthalate	<	10 U	 <	10 U	 <	10 U	<	10 U	[<	10 U	<	10 U	<	10 U	 <		<	10
Acenaphthylene	<	10 U	<	10 U	\	10 U	<	10 U	١<	10 U	<	10 U	١	10 U	 <	10 U	<	10
2,6-Dinitrotoluene	<	10 U	 <	10 U	 <	10 U	۲	10 U	[<	10 U	 <	10 U	<	10 U	I۲	10 U	 <	10
3-Nitroaniline	<u> </u>	25 W	 	25 W 10 U	 <	25 W 10 U	 <	25 W	 	25 W	 <	25 W	<	25 W	 <		<	25
Acenaphthene 2,4-Dinitrophenol	<	10 U 25 U	< <	25 W	<	25 W	 <	10 U 25 W	 	10 U	< <	10 25 W	<	10 U 25 W	 		 <	10
4-Nitrophenol	۲	25 U	<	25 W	<	25 W	<	25 W	\ <u>\</u>	25 W 25 W	<	25 W 25 W	< <	25 U	 		₹	25 25
Dibenzofuran		10 U	ζ.	10 U	<	10 U	<	10 U	2	10 U	<	10 U	ξ.	25 U 10 U	 <		ζ.	10
2,4-Dinitirotoluene		10 U	ζ.	10 U		10 U	<	10 U		10 U	<	10 U	2	10 U	[2	10 U	[10 1
Diethylphthalate	<	10 U	ξ.	10 U	<	10 U	<	10 U		10 U	2	10 U	<	10 U	\ <u>`</u>	10 U	<	10
4-Chlorophenyl-phenylether	<	10 U	~	10 U	<	10 U	ζ.	10 U	Ę	10 U	<	10 U	<	10 U	~	10 U	<	10
Fluorene	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	Ι.	10 U	Ι.	10 U	<	10
4-Nitroaniline	<	25 U	<	25 U	k	25 U	<	25 U		25 U	<	25 U	ζ.	25 U	Į,	1	<	25
4,6-Dinitro-2-methyphenol	<	25 U	<	25 U	<	25 U	<	25 U	k	25 U	<	25 U	<	25 U	k	25 U	-	25
N-Nitrosodiphenylamine (1)	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	 <	10
4-Bromophenyl-phenylether	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	k	10 U	<	10
Hexachiorobenzene	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10
Pentachiorophenol	<	25 U	<	25 U	<	25 U	<	25 U	<	25 U	<	25 U	<	25 U	<	25 U	<	25
Phenanthrene	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10
Anthracene	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 1
Carbazole	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 1
Di-n-butylphthalate	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 (
Fluoranthene	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 (
Pyrene	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 U	<	10 1
Butylbenzylphthalate	<	10 U	<		<	10 U	<	10 U	<	10 U	<	10 U	<	10 W	<	10 U	<	10 (
1 '	<		<		<	10 W	<	10 W	<		<		<	10 W	<		<	10
	<	10 U	<		<	10 U	<	10 U	<		 <	10 U	<	10 U	<		<	10 (
Chrysene	<	10 U	<		<	10 U	<	10 U	<	10 U	<	10 U	۲	10 U	<		<	10 (
bis(2-ethythexyl)phthalate	L	4 J	1.	2 J	<	10 U	<	10 U	 <	10 U	<	10 U		2 J	<		<	10 (
Di-n-octylphthalate	<	10 U	 ^		۲	10 U	<	10 U	<	10 U	<	10 U	١<	10 U	<		<	10 (
Benzo(b)fluoranthene	<	10 U	'		<	10 U	<	10 U	 <	10 U	١<	10 U	۲	10 U	<	10 U	۲	10 (
Benzo(k)fluoranthene	<	10 U	<		<	10 U	<	10 U	۲	10 U	۲	10 U	 	10 U	<		<	10 (
Benzo(a)pyrene	<	10 U	 		<	10 U	<	10 U	 	10 U	<	10 U	 	10 U	<	10 U	<	10 (
Indeno(1,2,3-cd)pyrene	<	10 U	<		<u>'</u>	10 U	<	10 U	 	10 U	<	10 U	<	10 U	<	10 U	<	10 (
	<	10 U	\		۲	10 U	<	10 U	<	10 U	<	10 U	<	10 U	۲	10 U	<	10 !
Benzo(g,h,í)perylene	<	10 U	<	10 U	<	10 U	<	10 U	<u> <</u>	10 U	<_	10 U	╚	10 U	<u> </u>	10 U	<	10

h	eptachlor epoxide	<	0.05 U	<	0.05 U	<	0.05 U	<	0.05 U	<	0.05 U	<	0.05 U	<	0.05 U	<	0.05 Ų	<
e	ndosulfan i	<	0.05 U	<	0.05 U	<	0.05 U	<	0.05 U	<	0.05 U	<	0.05 U	<	0.05 U	 <	0.05 U	<
[di	eldrin	<	0.10 U	<	0.10 U	<	0.10 U	<	0.10 U	<	0.10 U	<	0.10 U	 <	0.10 U	<	0.10 U	<
4	4'-DDE	<	0.10 U	<	0.10 U	<	0.10 U	<	0.10 U	<	0.10 U	<	0.10 U	<	0.10 U	<	0.10 U	<
E	ndrin	<	0.10 U	<	0.10 U	<	0.10 U	<	0.10 U	<	0.10 U	<	0.10 U	<	0.10 U	<	0.10 U	<
E	ndosulfan II	<	0.10 U	<	0.10 U	<	0.10 U	<	0.10 U	<	0.10 U	<	0.10 U	 <	0.10 U	<	0.10 U	<
4	4'-DDD	<	0.10 U	<	0.10 U	<	0.10 U	<	0.10 U	<	0.10 U	<	0.10 U	<	0.10 U	<	0.10 U	<
ļΕ	ndosulfan Sulfate	<	0.10 U	<	0.10 U	<	0.10 U	<	0.10 U	<	0.10 U	<	0.10 U	 <	0.10 U	<	0.10 U	<
4	4'-DDT	<	0.10 U	<	0.10 U	<	0.10 U	<	0.10 U	<	0.10 U	<	0.10 U	<	0.10 U	<	0.10 U	<
N	lethoxychlor	<	0.50 U	<	0.50 U	<	0.50 U	<	0.50 U	<	0.50 U	<	0.50 U	<	0.50 U	<	0.50 U	<
E	ndrin Ketone	<	0.10 U	<	0.10 U	<	0.10 U	<	0.10 U	<	0.10 U	<	0.10 U	<	0.10 U	<	0.10 U	<
ĮΕ	ndring aldehyde	<	0.10 U	<	0.10 U	<	0.10 U	<	0.10 U	<	0.10 U	<	0.10 U	<	0.10 U	<	0.10 U	<
a	pha-chlordane	<	0.05 U	<	0.05 U	<	0.05 U	<	0.05 U	<	0.05 U	<	0.05 U	<	0.05 U	<	0.05 U	<
lg.	amma-chlordane	<	0.05 U	<	0.05 U	<	0.05 U	<	0.05 U	<	0.05 U	<	0.05 U	<	0.05 U	<	0.05 U	<
T	oxaphene	<	5.00 U	<	5.00 U	<	5.00 U	<	5.00 U	<	5.00 U	<	5.00 U	<	5.00 U	<	5.00 U	<
A	roclor 1016	<	1.00 U	<	1.00 U	<	1.00 U	<	1.00 U	<	1.00 U	<	1.00 U	<	1.00 U	 <	1.00 U	<
A	roclor 1221	<	2.00 U	<	2.00 U	<	2.00 U	<	2.00 U	<	2.00 U	<	2.00 U	<	2.00 U	<	2.00 U	<
A	rodor 1232	<	1.00 U	<	1.00 U	<	1.00 U	<	1.00 U	<	1.00 U	<	1.00 U	<	1.00 U	<	1.00 U	<
ļΑ	rodor 1242	<	1.00 U	<	1.00 U	<	1.00 U	<	1.00 U	<	1.00 U	<	1.00 U	<	1.00 U	<	1.00 U	<
A	roctor 1248	<	1.00 U	<	1.00 U	<	1.00 U	<	1.00 U	<	1.00 U	<	1.00 U	<	1.00 U	<	1.00 U	<
A	roctor 1254	<	1.00 U	<	1.00 U	<	1.00 U	<	1.00 U	<	1.00 U	<	1.00 U	<	1.00 U	<	1.00 U	<
Δ	roctor 1260	<	1.00 U	<	1.00 U	<	1.00 U	<	1.00 U	<	1.00 U	<	1.00 U	<	1.00 U	<	1.00 U	<

Beryllium	⋖	1.0 U	<	1.0 U	<	1.0 U	₹	1.0 U	V	1.0 U <	1.0 Ū	<	1.0 U	٧	1.0 U	<	1.0 U	<	
Cadmium	<	5.0 U	<	5.0 U	<	5.0 U	<	5.0 U	٧	5.0 U <	5.0 U	<	5.0 U	<	5.0 U	<	5.0 U	<	
Calcium	H	34,900		45,800		41,800	l	43,600		22,900	21,900	ı	54,500		40,000		32,100		3
Chromium		17.0	<	2.0 U	<	2.0 U	<	2.0 U		4.0	4.0	<	2.0 U	<	2.0 U	<	2.0 U		
Cobalt	⋖	4.0 U		8.0		9.0		7.0	<	4.0 U <	4.0 U		7.0		6.0		9.0	<	
Copper	<	4.0 U	<	4.0 U	<	4.0 U	<	4.0 U	<	4.0 U <	4.0 U	<	4.0 U	<	4.0 U	<	4.0 U	<	
Iron		11,700		1,380		7.0		6.0		16.0	23.0		26.0		4,880		43.0		
Lead	<	1.0 U	<	1.0 U	▽	1.0 U	₹	1.0 U		1.0	1.0 Ü	<	1.0 U	k	1.0 U	<	1.0 U		
Magnesium	- 1	5,980		6,040		7,800		7,260		1,530	1,520	1	10,700		3,480	1	6,000		
Manganese	j	586		734		536		179		18.0	20.0	1	502		480	1	279	Γ	
Mercury	<	0.2 U	<	0.2 U	<	0.2 U	<	0.2 U	<	0.2 U <	0.2 U	ļ<	0.2 U		0.4	<	0.2 U	<	
Nickel		29.0	<	5.0 U	<	5.0 U	<	5.0 U	<	5.0 U <	5.0 U	<	5.0 U	<	5.0 U	<	5.0 U	<	
Potassium		4,750		31,600		3,340		4,740		3,670	3,700		3,880		14,000		3,010		
Selenium	-	3.0 U	<	3.0 U	↸	3.0 U	<	3.0 U	٧	3.0 U <	3.0 U	<	3.0 U	k	3.0 U	<	3.0 U	<	
Silver	<	5.0 U	<	5.0 U	<	5.0 U	<	5.0 U	<	5.0 U <	5.0 U	<	5.0 U	<	5.0 U	<	5.0 U	<	
Sodium	-	50,500		71,100	l	42,700		37,900		29,600	27,800		96,100	1	72,500	ı	131,000		10
Thallium	<	1.0 U	<	1.0 U		1.0	<	1.0 U		1.0	1.0	<	1.0 U	<	1.0 ប		1.0	<	
Vanadium		3.0	<	2.0 U		3.0	<	2.0 U	٧	2.0 U	3.0	<	2.0 U	<	2.0 U	<	2.0 U		
Zinc		55.0	<	5.0 U	<	5.0 U	<	5.0 U		6.0	5.0 U	<	5.0 U		8.0	<	5.0 U		
Cyanide	<	2.0 U	<	2.0 U	l∢	2.0 U	<	2.0 U	$\overline{}$	2.0 U <	2.0 U	k	2.0 U	<	2.0 U		10.2	<	1

Appendix A.3

GHR 1988 Whitney Barrel Soil and Groundwater Data
Summary Table Excerpts

Table 2-6 (Continued) Whitney Baseal Property Suil Analytical Results

	٠ = ١٠٠٠ - ١٠٠٠	7 - -		,					•		– }. – .	,	Anaiy.	ICAI KE	MIII										
Сенцыяна	TP-1 0'-6'	TP-3	Tr+6	Tr-7 0-65	TP-9	17'-11 #-6	TP=12	119-11 Dup 11-6	177-17	77'-15 0'-65	17'-17 0'-7.5	T)* = 18	MW-1s	MW-2: U-IF	MW-3:	L1W-45	B-1	B-2	B-3	B-4	8-5	<u>п</u> -6	13-6 rep	B-7	D-
end Compounds (mg/kg)														0 - 14	6.411	U-15.5	0-16	4-11	0-15	<u> </u>	0-10.5°	0-15		U-10.5	le.
4.2 Trabboundened (2)	1								-															2 (0;:-)	12
4 - Directlylybend	11				-,-		0.014	0 0171		(LO),U	~		· ····································												
- Methylphenol	11																		- -						.,
- Methylphenid	11								~-																
henol]]																								
1400					==			=	=.=						~-										
etickles/PCIk (mg/kg)		^														=									
hiuntine] [==					26.8	17.6																		
3B-1242	11	i	7.26	4.52		20.0	17.0	19.5	0.47	1.98	5.97	0.31		0.28	3.6	4.03	0.38			.,					
3B~1254	0.11	i	11.4	7												4.03		γ - γ	1.61	0.29	6.3	2.12	1.89	3.55	
B-1248		L					~-	~-										1							
J3 1 260	11			7.01	1.2	16.6												1 1	5.26					3,96	
		-		7,171		40.0	.56	<u>9.8</u>	1.03	3.38	8.46	0.54	0.09		5,37	0.5	0.07	\-7	~-						
wanie Crimboniada (my/k	r)														1,100	ر.,ں	0.07	<u> </u>		0.21	5.36	1.1	0.96		
n na na na na na na na na na na na na na	7,760	1,930	4,0891	5,150	3.2(4)	1,210	4.530	1.170	-: . ==																
Tinnenry	27	22	32	26	24	7,510	4,,44,	1,,114,1	4,670	4,200	3,710	3,590	Silan	1,490	3,570	3.470	6.200	3.77u	3.110	3 000					
lenie	4.4	2.02	3.1	4 16	2.5	4.9	415							24	~ ~	24	W.4181	222		3,960	4,650	3,820	3,140	4,850	-3
rium	34	17	17	20		13		375	14	4.9	3.8	2.8	2.9	2.67	7.62	2.25	4.16	3.1			22		30		
lm lum	11							10	17	22	.56		18	12	21	17	26	J. I	4,7 40	2.38	3.52	4.2	2.57	4.06	
cium	556	8.56	869	748	538	634														~-	15	21		20	
4 1431 WILL	22	8.1	10	17.6	5.9	18	192	424	779	872	1.5(X)	422	1,500	902	1.230	890	993	מנד							
wk	6		÷ -	5.9		14	,	10	lu	35	420	12	16	7.9	23.8	ນ້ຳ	20.8	177	1,540	697	1,150	934	66 j	1,750	
indi -	14	5	10	15.8	3.9												5.9	•	28	9.4	51	58	19.8	450	
	9,270	4,770	6610	10.000	4,770	5.140	4 4	3	10	20	13	4	10	5.9	17.8	33.3	23.4		. 0		5.9				
d	76	17.2	42	101	12.2	32	3,5(0)	3, 190	6,530	8,170	4,930	3,450	7,330	4,940	7.410	5,200	6.730	4 7000	39	5.9	11.5	19	7.9	15.8	
rnesimu	1.870	1,300	1,290	1.010	846		[0]		52	72	252	10	54	13.9	95	35.3	19.8		20,200	4,7420	5, S(x)	(T'(XX)	4,440	4,920	6
tearse.	72	63.7	70	81.2	41.7	936 57	1412	930	731	1.000	1.070	846	1,830	1,230	1,190	1.040	1.340	11	233	16,3	33.3	82	21.8	61.3	
wary 🤛	0.42	0.45	.0.44	0.53	0.62		45	42	50	74	62	34	-102	65.3	74.3	56.9		942	1,630	1,130	1,300	1,110	887	767	
kel	10	10.1	10	9.9	_	U,7	0.4	0.6	ta.5	0.34	0.66	0.48	0.31		0.36		12.2	.50	143	53.4	74.5	83	44.6	50.5	
9.55 św. co	509	552	509	396	8.3 378			- 6	ä	10	8	Ä	10	8.9	9.9	7.8			0.52				0.2A		
iun	36	68.7	.407 98			357	324	179	107	4,57	393	293	318	532	495		14.8	10	14	7,4	9.5	10	9.9	9,9	•
1	29	177	70 78	129 59.4	56.9	62	90	1(x)	72	66	78	33	115	65.4	103	490	9,54	471	639	559	554	479	425	283	
	·		- 0	77.1	15.7		1;	10	56	69	66	15	12	15.8	66.3	58.8	85.1	.50	95	36.6	64.7	62	49.5	42.6	3
ı											- 1.7			: 2.0	<u> </u>	41.7	33.7	92_	170	. 32.7	27.4	60	22.6	45.5	•

NA - Not Analyzed flys

- Painard Quanty

-- - Nelme Detentuble ("im)

C ... The excell few from rewritted for the processes of the analyse untile ideal.

All compounds bated were decreted at mortime during another of redound, and or water Source; Sole Assertance Require of the factor Whater Baret Ca. 256 Solom St. Wolant Cliff Engineering Amon.

ğ

Table 2-6
Whitney Barrel Property Soil Analytical Results

***************************************	· (i ·	,			. 	,																
Compand	17'-1 (F-6	17-3 0-5	71°-6	TP-7 0-65	1'P-9	TP-11 U-6	T1' ~ 12 B' ~ 6'	TT=12 Dup U = 6	TP-13	77-15 0-65	Tr-17	77-18 (1-6	MW-Is	MW-2	MW-34	MW-11	B-1	B-2	B-3	B-4	B~5	B-6	tcb n~e	B-7	B-6
Vointille Oryanic Compensate	/ma #= \					*			<u> </u>	1.2" Ti-1"	10 - 7.51	0 -4		11-11	0-14	0 - 15.5	U-16	0-11	a-12	T-10.5	T-10.5	0-15	U-)5	0-10.5	0-1
1.1.1-Trichlomethane	العمتديس							• •		-					•										
1,1-Dkhlametkine	[] []						0.026	2	0.015							++							 -		
1.2-Dichlerenthene	// II																~~								
2- Butanone	H							0.632																	
4-Methyl-2-Pentinone										~-															
Acelone					0.0050	*-																			-
llenzene					n inter.															0.0170	~-				
Carbon Disulfate																									
Chlorubenzene																	~-			0.001	~~				-
Chloroethage							0.25	0.24			~~														-
Chloroform																									
Libybenzene																									
Methylene Chloride	==					***	3.9	3.9																	
Teimehlorneilinne	1 ==		*-				-~					~-					0.004JC		0.00MC		0.00UC	8 0041C			0.00510
Termebliomethese	0.0031				0 0021																				V.00.01
Toluene	17,181,53			0.013	0.0020		320	130	0.007				0.013		0.0021				0.0033						
Total Xylenes	1 ==						31	26																0.0021	
Trichlomethene	0.0043			0.015			26	28	(1,0K)21															********	
Vinyl Chloride				V.VIB			130	120					0.0031												
							=_	<u></u>	==	=															_
bişç <u>Neutrils</u> Cimponods (m	· /k » \																								
1.24-Trichlenesbengene	"[""]			0.101			0.0%		:																
1.2-Dichlorchenzene						0.07.1	0.007J	0.079	0.1 JUJ	O. TOLU	0.1704	0.0713							~-					~ ~	
1,1-Dicklaudenzene						0.300	V.W//	4.007)																	
1,4 - Dichlotobenzene	!			4149011			0.CELSJ	0.003			0.36										0.1703				-
2-Methylaaphtholene			0.4		0.2160	0.072	0.036	0.036	0.300	0.2000	0.92										0.49				
Aremphiliene							D.CXISU	0.003	0.0081	0.0721	0.82	0.0753	0.2 KU						0,0693		·				
Accomplishylene						U. 1,74	0.14),0	9.00,9	0.0723	**	2.3						~-		0.2305			1	0.45		_
Anthracene										0.170	0.2001								0.120						
Bestn(A)Anthracese	0.0717	0.1500	0.160	0 1101						0.110	1.4		0.071J						0.4	~-		0.092J	0.190		
Benzo(A) Frene (1)	0.0663	0.140	0.2001	0.170					0.0633	0.030	0.64 0.44		0.16QJ		0.1103	ロロソコ			1.1			0.37	0.37		0.069
Benzo(B)Fluomathene	allo	0.1GIU	0.330	0.1301		0.0751			U.1441J	0.0333	0.56		2		0.1303	0.0281			1.2			0.2201	0.3103		
llenzo(GHI)Perylene]	0.07(1)	0.1303	0.1500						0.0691	0.3200		0.1303		0.130J	0.0741			0.96			0.200	0.2501		-
Heato(K)Fluoranthene				0.1200						0.067/	0.320		0.150	~ *	0.2103	0.0921		0.0821	1				0.1803		-
lieszyl Akokol								-		0 (3177	0,290		ar t'xm		0.0581	0.0683		~-	0.64			0,260/	0.36		_
licazyi Thuyi I'hthabite			0.1340																						_
Bit - (2 - Ethylhext) Phthabite	0.51	0.0933	1	0.39	0.39	1.3	0.033	0.038	0.51	0.79	0.58	0.31(1)	0.2001	0.74						0.1600				5.7	
Chiysene	0.0800	0.1500	0.800	0.1401					0.0753	0.220	G.B			1.9	0.13		0,230/	0.220	0.6		1.4	0.46	0.41	- 11	0.096
Ditenzoluma						0.0661	0.000	0.0004	0.113	1,	0.82		0.2103	0.1003	0.1501	u 17W	0.0813		1.4			0,56	0.5		
DibenzorAl DAnthracence 🗠				0.0657					. 10.113		0.1807					~~						0.2407	0.1303		
Dictly I Phthalate							0.01	0,01			0,1010	·							0.240J				0.0801		
N - N - Butyl Phthabate -							0.013	0.013																	
Di-N-Octyl Philadate																					2.9			0.110	O.IFM.
boomthere	0.1503	0.2640	0.270	0 (30)		O. ROM			0.030	0.1.103	2.6	0.0311	0.37	0.0951											
Fluorenc S					0.0741	0.0733	0.000	0.000	0.1703		1.6	*.WIII	0.120	0.0233	~-	0.1401	O. IOLU	0,1001	3		0.072	1.9	1.4		0.17/2
mieno(1,1,3-CD)Pyrene 📑			0.110	0.1103				= -			0.2903		0.130		0.560				0.2301			0.280J	0. IWD		•
Napilalene			0.59			0.2103	0.014	0.014	0.0771	0.1300	3.9		0.1603		0.1500				0.6				0.1701		-
lienantioene -	0.0847	0.1407		0.0753	0.1203			0.0051	0.11	0.190		0,0971	0.2200										0.1001		-
Yrene	0.1207					0.120			0.1001			0.0331		0.0071	0.0951				2			0.290	0,67		0.464.
									-27.112!!_	17.11.0		V,141,1)	0.41	0.0964	0.51m	0.2601	0,0951	0.0211			1,7/98,1	0.54	0.83		0.100

Men

NA . Nie Anahani Lie

Latiendeil (Josephy)

· Pober (biertatte | mas

4. They must be a trensposerated for the presence of the analyse make beaut.

All companies faced were detected at mortwordswing another of colonies, and or water. Switer: Site American Report of the forum Whitney Burell's site, 25% alone St. Wishmen; till ft Engineering Americans.

Table 2-7
Whitney Barrel Company
Summary of Analytical Results of Ground Water Samples

MCI Sugh	Contpound	MW-1s	/ MW-2s	MW-2s DUP	MW-3s	MW-43
mou						111 11 - 42
	Volatile Organic Compounds (ug/L)		T			-
5 mel	Benzene /	5	 	2 J	12	63
سر دن مده	Chlorobenzene	3 1	39	35	2 J	61
100	1.1.1 - Tricloroethane	']			99
-	1.1 - Dichloroethane		1 ==		43	300
•	Chloroethane]		43	2 J
	Chloroform]			
/,w	1,2-Dichloroethene	39	49	45	77	
	Ethylbenzene	2 3	1 7	10	31	31
700	Methylene Chloride	1		10	21	90
טמסן	Toluene /		1 Л	 1J	26	ŧ
2	Vinyl Chloride	ii	18	13	26 32	66
	Acetone				34	15 J
	2-Butanone		- - .		~	140 C
	4-Methyl-2-Pentanone					16 J.C
فلای را	Total Xylenes	5	5	4 3	5 J	12 J
J 002		<u> </u>		4)	96	180
-	Base Neutral Compounds (ug/L)					[
70	1,2,4-Trichlorobenzene					17 J
600	1,2-Dichlorobenzene				17 J	21
	1,3 - Dichlorobenzene		29	29	6 J	10
78	1.4-Dichlorobenzene	!	140	140	8 J	24
- '-	Napthalene				11 J	0.1
-	Bis-(2-Ethylhexyl) Phthalate	10 J,C	· 			5 J.C
~	Diethyl Phthalate					8 J.C
	2-Methylnapthalene				5.1	
`	Anid Composed (co. (f.)					<u> </u>
	Acid Compounds (ug/L) 2-4-Dimethylphenol					
$\overline{}$	Phenol					2.5
	2 – Methylphenol	~~				15 J
	1-Methylphenol					39
`		<u></u>			6 J	30
	Pesticides/PCBs (ug/L)		\			1
	PCB-1260		2.8	10	2.2	
	Inorganic Compounds (ug/L)			 		
_ ;	Aluminum /					
	Arsenic A	5,600	1,400			()
	Calcium	11	3		62	
•	- ···	62,400	23,800	34,800	60,800	60.8
	Copper				[
1	Iron —	13,500	4,200	5,580	35,000	35 (4)
	Magnesium	6,100	2,040	2,660	10,900	10,990
	Manganese	1,780	680	940	1,520	1,520
	Potassium	6,700	11,100	15,500	12,800	12,845
	Sodium	34,600	50,800	68,100	185,000	185.6
_	Zine	60		20	60	
) - c	iotes: A = Not Analyzed For = Estimated Quantity - = Below Detectable Limit = The result has been corrected for the presen		1	Engineering Associates L	988	

Appendix A.4

Clean Harbors Table and Figure Excerpts for the Murphy Property and Short Term Measure Soil

Characterization Data

TABLE 1
FIELD-SCREENING RESULTS

			YOC	
ocation	Sample	Depth	Headspace	Comments
	<u> </u>	(feet)	(ppm)	
I-1	SS-1	0.5-2.5	<1	Fill
•	SS-2	2.5-4.5	4.0	n
	SS-3	4.5-6.5	7.0	10
	SS-4	6.5-8.5	<1	Sand and Gravel
	SS-5	8.5-10.5	2.0	*
	SS-6	10.5-12.5	4.0	N
-2	SS-1	0.5-2.5	16	Fill
-2	SS-2	2.5-4.5	24	*
	SS-3	4.5-6.5	160	
		6.5-8.5	100	Sand and Gravel
	SS-4		100	Sand and Graves
	SS-5 SS-6	8.5-10.5 10.5-12.5	150	-
				
-4	SS-1	0-2	3.0	Fill
	SS-2	2-4	1.8	W
	SS-3	4-6	1,4	
	SS-4	6-8	4.0	Sand and Gravel
	SS-5	8-10		
	SS-6	10-12	>1,000	
	SS-7	12-14	>1,000	r)
-5	SS-1	0-2	<1	Fill
	SS-2	2-4	<1	H•
	SS-3	4-6	<1	•
	SS-4	6-8	<1	Sand & Gravel
	SS-5	8-10	<1	•
	SS-6	10-12	1.2	•
	SS-7	12-14	3.6	•
6	SS-1	0-2	1.2	Fill
•	SS-2	2-4	19	H
	SS-3	4-6	<1	
	SS-4	6-8	<1	Sand and Gavel
	SS-5	8-10	8.2	**
	SS-6	10-12	3.0	*
.7	SS-1	0-2	<1	Fill
- 1	SS-2	2-4		*
	SS-3	4-6	<1	**
	SS-4	6-8	48	Sand and Gavel
	SS-5	8-10	>1,000	A CALL
	55-5 SS-6	10-12	600	*
				T+11
-8	SS-1	0-2	<1	Fill
	SS-2	2-4	<1	*
	SS-3	4-6	<1	
	SS-4	6-8	>1,000	Sand with little Gravel
	SS-5	8-10	>1,000	
	SS-6	10-12	280	•

TABLE 1 (continued)

FIELD-SCREENING RESULTS

			VOC	
Location	Sample	Depth	Headspace	Comments
		(feet)	(ppm)	
3-9	SS-1	0-2	<1	Fill
- /	SS-2	2-4	<1	t e
	SS-3	4-6	<l< td=""><td>10</td></l<>	10
	SS-4	6-8	28	Sand with little Gravel
	SS-5	8-10	850	*
	SS-6	10-12	180	•
				T=11
-10	SS-1	0-2	<1	Fill
	SS-2	2-4	<1	
	SS-3	4-6	< <u>1</u>	
	SS-4	6-8	1.8	Sand with little Gravel
	SS-5	8-10	2.0	 M
	SS-6	10-12	30	
-11	SS-1	0-2	<1	Fill
	SS-2	2-4	<1	99
	SS-3	4-6	<1	H
	SS-4	6-8	12	Sand with little Gravel
	SS-5	8-10	32	H
	SS-6	10-12	325	*
-12	SS-1	0-2	<1	Fill
	SS-2	2-4	<1	₩
	SS-3	4-6	<1	
	S S -4	6-8	2.6	Sand with little Gravel
	SS-5	8-10	4.2	•
	SS-6	10-12	1.6	H
-13	SS-1	0-2	40	Fill
	SS-2	2-4	17	-
	SS-3	4-6	38	
	SS-4	6-8	>1,000	Sand with little Gravel
	SS-5	8-10	>1,000	~
	SS-6	10-12	>1,000	, "
-14	SS-1	0.5-2.5	95	Fill
-7	SS-2	25-4.5	>1,000	4
	SS-3	45-65	>1,000	-
	SS-4	6.5-8.5	>1,000	Sand with little Gravel
	SS-5	8.5-10.5	>1,000	•
	SS-6	10.5-12.5	850	**
-15	SS-1	0-2	<1	Fill
_	SS-2	2-4	3.0	**
	SS-3	4-6	<1	•
	SS-4	6-8	<1	Sand with little Gravel
	SS-5	8-10	1.5	•
	SS-6	10-12	3.5	•
	SS-7	12-14	18	*

TABLE 1 (continued)

FIELD-SCREENING RESULTS

Location	Sample	Depth	VOC Headspace	Comments
NOCETION .	Gample	(feet)	(ppm)	Comments
B-16	SS-1	0-2	<1	Fill
	SS-2	2-4	<1	r# H
	SS-3	4-6	<1	
	SS-4	6-8	<1	Sand with little Gravel
	\$\$-5	8-10	<1	
	SS-6	10-12	1.8	H
	SS-7	12-14	1.2	H
3-17	SS-1	0-2	8.2	Fill
_	SS-2	2-4	70	**
	SS-3	4-6	14	•
	SS-4	6-8	1.5	Sand with little Gravel
	SS-5	8-10	3.8	н
	SS-6	10-12	1.4	*
B-18	SS-1	0-2	5.8	Fill
- 10	SS-2	2-4	2.6	¢ ****
	SS-3	4-6	2.0	•
	SS-4	6-8	4.6	Sand with little Gravel
	SS-5	8-10	3.2	H CALLED THE STATE OF THE STATE
	SS-6	10-12	6.4	•
	SS-7	12-14	1.2	99
3-19	SS-1	0-2	<1	Fill
	SS-2	2-4	~1	*
	SS-3	4-6	<1	Sand with little Gravel
	SS-4	6-8	7.6	*
	SS-5	8-10	<1	**
	SS-6	10-12	<1	**
3-20	SS-1	0-2	<1	Fill
-40	SS-2	2- 2 2- 4	——————————————————————————————————————	4
	SS-3	4-6	<1	Sand with little Gravel
	SS-4	4-0 6-8	5.8	SHAL WILLING CHAVEL
	SS-5	8-10	1.2	•
	SS-6	10-12	1.2 <1	*
ATT 215			.•	0_4_23:24:0
AW-3D	SS-1	14-16	<1	Sand with little Gravel
	SS-2	19-21	<1	
	SS-3	24-26	<1	**
	SS-4	29-31	< <u>l</u>	16
	SS-5	34-36	<1	. " #
	SS-6	39-41	1.2	Carrel with the set 5 - 3
	SS-7	44-46	<1	Gravel with trace Sand
	SS-8	49-51	<i< b=""></i<>	•

TABLE 1 (continued)

FIELD-SCREENING RESULTS

		•	VOC	
Location	Sample	Depth	Headspace	Comments
		(feet)	(ppm)	
MW-7	SS-1	0.5-2.5	60	Fill
	SS-2	25-4.5	230	•
	SS-3	4.5-6.5	350	•
	SS-4	6.5-8.5	460	-
	SS-5	8.5-10.5	70	Sand
	SS-6	10.5-12.5	100	•
MW-8	SS-1	0-2	1.6	Fill
	SS-2	2-4	3.0	
	SS-3	4-6	5.8	•
	SS-4	6-8	<1	H
	SS-5	8-10	<1	Sand with little Grave
1	SS-6	10-12	<1	-
MW-9	SS-1	0-2	<1	Fill
	SS-2	2-4		•
	SS-3	4-6	2.3	•
	SS-4	6-8		Sand with little Gravel
	SS-5	8-10	1.8	••
	SS-6	10-12	3.0	н
MW-10	SS-1	15-17	80	Sand and Gravel
	SS-2	17-19	68	•
	SS-3	24-26	2.7	•
	SS-4	29-31	5.0	•
	SS-5	34-36	2.8	
	SS-6	39-41	4.0	**
	SS-7	41-46	1.7	*
MW-11	SS-1	0-2	<1	Sand and Loam
	SS-2	2-4	<1	₩
	S\$-3	4-6	4	Sand with little Gravel
	SS-4	6-8	18	-
	SS-5	8-10	740	14
	SS-6	10-12	58	10

Headspace VOCs measured using Foxboro 128 GC Flame Ionization Detector.
 --- = Sample not screened.

TABLE 2 SOIL ANALYTICAL RESULTS **VOLATILE ORGANIC COMPOUNDS**

Murphy's Waste Oil Service, Inc. 252 Salem Street Woburn, MA

Location	Comulae	Depth	Benzene	Taluana	Totai Xylenes	A notone	Chloro-	DOE.		11150	- Ban		Vinyl	
Location	Samples			Toluene		Acetone	ethane	PCE	I,I-DCA	1,1,1-TCA	TCE	1-1,2-DCE	Chloride	2-Butanone
		(feet)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
B-1	(SS-3)	4.5-6.5	ND(5)	ND(7.5)	ND(5)	ND(50)	ND(10)	ND(7.5)	ND(7.5)	ND(5)	ND(5)	ND(7.5)	ND(18)	ND(23)
B-1	(SS-5)	8.5-10.5	ND(5)	ND(7.5)	ND(5)	ND(50)	ND(10)	ND(7.5)	ND(7.5)	ND(5)	ND(5)	ND(7.5)	ND(18)	ND(23)
B-2	(SS-3)	4.5-6.5	ND(5)	ND(7.5)	ND(5)	ND(50)	ND(10)	ND(7.5)	ND(7.5)	ND(5)	ND(5)	ND(7.5)	ND(18)	ND(23)
B-4	(SS-1)	0-2	ND(5)	ND(7.5)	ND(5)	ND(50)	ND(10)	ND(7.5)	ND(7.5)	ND(5)	ND(5)	ND(7.5)	ND(18)	ND(23)
B-4	(SS-6)	10-12	ND(10)	ND(15)	290	ND(100)	ND(20)	ND(15)	ND(15)	ND(10)	ND(10)	ND(15)	ND(35)	ND(45)
B-6	(SS-5)	8-10	ND(5)	ND(7.5)	ND(5)	ND(50)	ND(10)	ND(7.5)	ND(7.5)	ND(5)	ND(5)	ND(7.5)	ND(18)	ND(23)
B-7	(SS-5)	8-10	ND(5)	ND(7.5)	ND(5)	ND(50)	ND(10)	ND(7.5)	ND(7.5)	ND(5)	ND(5)	ND(7.5)	ND(18)	ND(23)
B-8	(SS-1)	0-2	ND(5)	ND(7.5)	ND(5)	ND(50)	ND(10)	ND(7.5)	ND(7.5)	ND(5)	ND(5)	ND(7.5)	ND(18)	ND(23)
B-8	(SS-4)	6-8	ND(7.5)	ND(L1)	ND(7.5)	ND(75)	ND(15)	ND(11)	ND(11)	ND(7.5)	ND(7.5)	ND(11)	. ND(26)	ND(34)
B-9	(SS-5)	8-10	ND(5)	ND(7.5)	ND(5)	ND(50)	ND(10)	ND(7.5)	ND(7.5)	ND(5)	ND(5)	ND(7.5)	ND(18)	ND(23)
B-10	(SS-6)	10-12	ND(5)	ND(7.5)	ND(5)	ND(50)	ND(10)	ND(7.5)	ND(7.5)	ND(5)	ND(5)	ND(7.5)	ND(18)	ND(23)
B-11	(SS-4)	6-8	ND(5)	ND(7.5)	ND(5)	ND(50)	ND(10)	ND(7.5)	ND(7.5)	ND(5)	ND(5)	ND(7.5)	ND(18)	ND(23)
B-11	(SS-6)	10-12	ND(5)	ND(7.5)	ND(5)	ND(50)	ND(10)	ND(7.5)	ND(7.5)	ND(5)	ND(5)	ND(7.5)	ND(18)	ND(23)
B-12	(SS-5)	8-10	ND(5)	ND(7.5)	ND(5)	ND(50).	ND(10)	ND(7.5)	ND(7.5)	ND(5)	ND(5)	ND(7.5)	ND(18)	ND(23)
B-13	(SS-1)	0-2	ND(10)	ND(15)	ND(10)	ND(100)	ND(20)	29	46	32	86	210	ND(35)	ND(45)
B-13	(SS-5)	8-10	ND(10)	ND(15)	ND(10)	ND(100)	ND(20)	ND(15)	ND(15)	ND(10)	ND(10)	ND(15)	ND(35)	ND(45)
B-14	(SS-2)	2.5-4.5	ND(500)	ND(750)	1,300	ND(5000)	ND(1000)	ND(750)	ND(750)	ND(500)	ND(500)	ND(750)	ND(1800)	ND(2300)
B-14	(SS-5)	8.5-10.5	ND(200)	380	580	ND(2000)	ND(400)	ND(300)	ND(300)	ND(200)	ND(200)	ND(300)	ND(700)	ND(900)
B-15	(SS-5)	8-10	ND(5)	ND(7.5)	ND(5)	ND(50)	ND(10)	ND(7.5)	ND(7.5)	ND(5)	ND(5)	ND(7.5)	ND(18)	ND(23)
B-15	(SS-7)	12-14	ND(5)	ND(7.5)	ND(5)	ND(50)	ND(10)	ND(7.5)	ND(7.5)	ND(5)	ND(5)	ND(7.5)	ND(18)	ND(23)
B-16	(SS-6)	10-12	ND(5)	ND(7.5)	ND(5)	ND(50)	ND(10)	68	ND(7.5)	ND(5)	ND(5)	ND(7.5)	ND(18)	ND(23)
B-17	(SS-2)	2-4	ND(250)	ND(250)	ND(250)	ND(980)	ND(490)	ND(250)	ND(250)	ND(250)	ND(250)	ND(250)	ND(490)	ND(980)
B-18	(SS-1)	0-2	ND(230)	ND(230)	ND(230)	ND(910)	ND(450)	240	ND(230)	ND(230)	1,300	ND(230)	ND(450)	ND(910)
B-18	(SS-3)	4-6	ND(250)	ND(250)	ND(250)	ND(990)	ND(490)	300	ND(250)	ND(250)	680	ND(250)	ND(490)	ND(990)
B-19	(SS-4)	6-8	ND(990)	ND(990)	ND(990)	ND(4000)	ND(2000)	ND(990)	ND(990)	ND(990)	ND(990)	ND(990)	ND(2000)	ND(4000)
B-20	(SS-4)	6-8	ND(5)	ND(5)	ND(5)	ND(20)	ND(10)	ND(15)	ND(5)	ND(5)	ND(5)	ND(5)	ND(10)	ND(20)
MW-1	(SS-5)	8-10	ND(5)	ND(5)	ND(5)	ND(20)	ND(10)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(10)	ND(20)
MW-2	(SS-2)	2-4	ND(5)	ND(5)	ND(5)	210	ND(10)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(10)	50
MW-3	(SS-6)	10-12	ND(5)	ND(5)	ND(5)	ND(20)	ND(10)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(10)	ND(20)
MW-3D	(SS-6)	39-41	ND(5)	ND(5)	ND(5)	ND(20)	ND(10)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(10)	ND(20)
MW-4	(SS-6)	10-12	ND(5)	ND(5)	ND(5)	23	ND(10)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(10)	ND(19)
MW-5S	(\$\$-6)	10-12	ND(5)	ND(5)	ND(5)	ND(18)	ND(9)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(9)	ND(18)
MW-6	(SS-1)	0-2	ND(5)	ND(5)	ND(5)	ND(20)	ND(10)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(10)	ND(20)
MW 7	(SS-2)	2.5-4.5	ND(5)	ND(7.5)	ND(5)	ND(50)	ND(10)	ND(7.5)	ND(7.5)	ND(5)	ND(5)	ND(7.5)	ND(18)	ND(23)
MW-7	(SS-4)	6.5-8.5	ND(750)	12,000	48,000	ND(7500)	ND(1500)	ND(1100)	ND(1100)	ND(750)	ND(1100)	ND(1100)	ND(2600)	ND(3400)
MW-9	(SS-6)	10-12	ND(5)	ND(7.5)	ND(5)	ND(50)	ND(10)	ND(7.5)	ND(7.5)	ND(5)	ND(5)	ND(7.5)	ND(18)	ND(23)
MW-10	(SS-2)	17-19	ND(5)	ND(5)	ND(5)	ND(20)	ND(10)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(10)	ND(20)
MW-10	(SS-4)	29-31	ND(5)	ND(5)	ND(5)	ND(20)	ND(10)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(10)	ND(20)
MW-11	(SS-3)	4-6	ND(5)	ND(7.5)	ND(5)	ND(50)	ND(10)	ND(7.5)	ND(7.5)	ND(5)	ND(5)	ND(7.5)	ND(18)	ND(23)
MW-11	(\$3-5)	8-10	ND(5)	ND(7.5)	ND(5)	ND(50)	ND(10)	ND(7.5)	ND(7.5)	ND(5)	ND(5)	ND(7.5)	ND(18)	ND(23)

- () = number in parentheses is laboratory Practical Quantitation Limit (PQL)
 ND = none detected above PQL
 ug/kg = micrograms per kilogram

- All analyses by EPA Meshod \$260

 Cis-1, 2-dichlorosthene reported as trans-1, 2-dichlorosthene
 Results for MW-1, MW-2, MW-3, MW-4, MW-5S and MW-6 from October 1994

TABLE 3 SOIL ANALYTICAL RESULTS TPH & POLYNUCLEAR AROMATIC HYDROCARBON COMPOUNDS

Murphy's Waste Oil Service, Inc. 252 Salem Street Woburn, MA

Location	Sample	Depth	ТРН	Naphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene
		(feet)	mg/kg	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
B-1	(SS-3)	4.5-6.5	23	45	ND(41)	ND(41)	ND(8.4)	28	ND(21)	41	29
B-1	(SS-5)	8.5-10.5	16	ND(78)	ND(78)	ND(78)	ND(16)	65	ND(40)	100	100
B-2	(SS-3)	4.5-6.5	94	ND(290)	ND(290)	ND(290)	ND(59)	350	ND(150)	920	540
B-4	(SS-1)	0-2	660	ND(3200)	ND(3200)	3,200	730	5,600	1,600	7,000	7,600
B-4	(SS-6)	10-12	7,700	ND(750)	ND(750)	ND(750)	180	560	ND(390)	430	310
B-6	(SS-5)	8-10	ND(10)	ND(40)	ND(40)	220	ND(8.1)	28	ND(21)	56	46
B-7	(SS-5)	8-10	11	ND(40)	ND(40)	ND(40)	ND(8.0)	ND(20)	ND(20)	9.3	ND(8.0)
B-8	(SS-1)	0-2	1,600	400	150	410	18	100	ND(22)	240	220
B-8	(SS-4)	6-8	38	ND(540)	940	580	ND(110)	660	ND(280)	1,200	730
B-9	(SS-5)	8-10	13	ND(40)	ND(40)	ND(40)	ND(8.1)	ND(20)	ND(20)	ND(8.1)	ND(8.1)
B-10	(SS-6)	10-12	- 14	ND(40)	ND(40)	ND(40)	ND(8.1)	ND(21)	ND(21)	9.5	ND(8.1)
B-11	(SS-4)	6-8	ND(10)	ND(40)	ND(40)	ND(40)	ND(8.2)	ND(21)	ND(21)	28	22
B-11	(SS-6)	10-12	ND(10)	ND(39)	ND(39)	ND(39)	ND(8.0)	ND(20)	ND(20)	ND(8.0)	ND(8.0)
B-12	(SS-5)	8-10	150	ND(39)	ND(39)	ND(39)	ND(7.9)	ND(20)	ND(20)	ND(7.9)	ND(7.9)
B-13	(SS-1)	0-2	4,700	ND(1400)	ND(1400)	ND(1,400)	ND(290)	2,200	ND(730)	3,600	4,300
B-13	(SS-5)	8-10	1,200	ND(160)	ND(160)	ND(160)	65	320	88	200	190
B-14	(SS-2)	2.5-4.5	6,400	ND(1500)	ND(1500)	ND(1500)	300	890	ND(750)	820	410
B-14	(SS-5)	8.5-10.5	3,000	ND(400)	ND(400)	ND(400)	120	570	ND(210)	560	410
B-15	(SS-5)	8-10	11	ND(39)	ND(39)	7 0	ND(7.8)	ND(20)	ND(20)	ND(7.8)	ND(7.8)
B-15	(SS-7)	12-14	ND(10)	ND(38)	ND(38)	38	ND(7.8)	ND(20)	ND(20)	ND(7.8)	ND(7.8)
B-16	(SS-6)	10-12	240	ND(39)	52	ND(39)	ND(7.8)	59	ND(20)	41	11
B-17	(SS-2)	2-4	730	ND(2900)	3,200	5,100	700	9,000	2,600	11,000	13,000
B-18	(SS-1)	0-2	1,100	ND(1400)	4,100	4,200	ND(280)	5,000	ND(710)	5,900	5,300
B-18	(SS-3)	4-6	86	ND(240)	730	580	ND(50)	820	ND(130)	1,100	940
B-19	(SS-4)	6-8	1,700	ND(4700)	ND(4700)	ND(4700)	ND(4700)	ND(4700)	ND(4700)	ND(470)	ND(470)
B-19	(SS-4)	6-8	450	ND(4400)	ND(4400)	ND(4400)	ND(4400)	ND(4400)	ND(4400)	660	480
MW-1	(SS-1)	0-2	130	****	.,,,,,,,,,					•••	
MW-1	(SS-5)	8-10	ND(10)	ND (330)	ND (330)	ND (330)	ND (330)	ND (330)	ND (330)	ND(330)	ND(330)
MW-2	(SS-1)	0-2	130	142 (330)	115 (550)						110(330)
MW-2 MW-2	(SS-2)	2-4	130	ND (330)	ND (330)	ND (330)	ND (330)	ND (330)	ND (330)	ND(3,300)	ND(3,300)
MW-2 MW-2	(SS-4A)	7.5-9.5	15	115 (550)	715 (353)			•••	•••	112(5,200)	110(5,500)
MW-2 MW-3	(SS-1)	0-2	320							~~ ~	
MW-3 MW-3	(SS-1)	6-8	61						***		
MW-3 MW-3	(SS-6)	10-12	ND(10)	ND (330)	ND (330)	ND (330)	ND (330)	ND (330)	ND (330)	ND(330)	MD(220)
MW-3D	(SS-6)	39-41	ND(10)	ND(42)	ND(42)	ND(42)	ND(8.5)	ND(21)	ND(21)		ND(330)
M M -3D	(33-0)	277-11	HIV(IA)	1712(46)	1717(46)	1717(42)	(כ.ס)עויו	110(41)	NU(ZI)	ND(8.5)	ND(8.5)

TABLE 3 (continued) SOIL ANALYTICAL RESULTS TPH & POLYNUCLEAR AROMATIC HYDROCARBON COMPOUNDS

Murphy's Waste Oil Service, Inc. 252 Salem Street Woburn, MA

Location	Sample	Depth	TPH	Naphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene
		(feet)	mg/kg	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
MW-4	(SS-1)	0-2	470								***
MW-4	(SS-5)	8-10	12		p==				***	***	***
MW-4	(SS-6)	10-12	ND(10)	ND (330)	ND (330)	ND (330)	ND (330)	ND (330)	ND (330)	ND(330)	ND(330)
MW-5S	(SS-1)	0-2	140	***				<u> </u>		***	1.0(550)
MW-5S	(SS-6)	10-12	ND(10)	ND (330)	ND (330)	ND (330)	ND (330)	ND (330)	ND (330)	ND(330)	ND(330)
MW-6	(SS-1)	0-2	180	ND(3,200)	ND(3,200)	ND(3,200)	ND(3,200)	ND(3,200)	ND(3,200)	ND(3,200)	ND(3,200)
MW-6	(SS-8)	18-20	ND(10)	***	•••						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
MW-7	(SS-2)	2.5-4.5	230	740	ND(690)	ND(690)	ND(140)	380	ND(350)	740	230
MW-7	(SS-4)	6.5-8.5	4,000	ND(1500)	ND(1500)	ND(1500)	310	1,900	ND(750)	3,700	3,100
MW-9	(SS-6)	10-12	ND(10)	ND(41)	ND(41)	ND(41)	ND(8.3)	ND(21)	ND(21)	ND(8.3)	ND(8.3)
MW-10	(\$\$-2)	17-19	94	ND(190)	ND(190)	ND(190)	ND(39)	130 ´	ND(98)	240	250
MW-10	(SS-4)	29-31	11	ND(37)	ND(37)	ND(37)	ND(7.5)	ND(19)	ND(19)	ND(7.5)	ND(7.5)
MW-11	(SS-3)	4-6	49	ND(230)	ND(230)	ND(230)	ND(47)	200	ND(120)	100	90
<u>MW-11</u>	(SS-5)	8-10	26	ND(40)	ND(40)	ND(40)	ND(8.2)	35	ND(21)	10	ND(8.2)

- 1. () = number in parentheses is laboratory Practical Quantitation Limit (PQL)
 2. ND = none detected above PQL
- 3. ug/kg = micrograms per kilogram
- 4. --- = not analyzed for that parameter
 5. Results for MW-1, MW-2, MW-3, MW-4, MW-5S and MW-6 from October 1994

TABLE 3 (continued) SOIL ANALYTICAL RESULTS TPH & POLYNUCLEAR AROMATIC HYDROCARBON COMPOUNDS

Murphy's Waste Oil Service, Inc. 252 Salem Street Woburn, MA

Location	Samples	Depth	Benzo (a) anthracene	Chrysene	Benzo (b) Nuoranthene	Benzo (k) Nuoranthene	Benzo (a) pyrene	Indeno (1,2,3-cd) pyrene	Dibenzo (a,h) anthracene	Benzo (g,h,i)perylene
		(feet)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
B-1	(SS-3)	4.5-6.5	16	23	18	8.8	18	7.0	1.6	16
B-1	(SS-5)	8.5-10.5	44	59	44	22	60	14	10	16
B-2	(SS-3)	4.5-6.5	440	420	380	200	540	77	44	64 370
B-4	(SS-1)	0-2	3,000	3,700	2,300	1,300	2,800	6,500	210	2,300
B-4	(SS-6)	10-12	170	500	150	51	220	61	ND(23)	150
B-6	(SS-5)	8-10	24	37	25	13	31	17	3.3	27
B-7	(SS-5)	8-10	3.1	ND(6.0)	4.2	2.0	3.4	2.5	ND(1.2)	3.5
B-8	(SS-1)	0-2	58	100	72	36	58	8.9	5.4	3.3 41
B-8	(SS-4)	6-8	370	350	·580	280	390	300	46	500
B-9	(SS-5)	8-10	1.0	ND(6.0)	3.2	1.2	2.8	ND(2.0)	ND(1.2)	4.1
B-10	(SS-6)	10-12	3.7	ND(6.0)	4.0	2.1	4.5	3.6	ND(1.2)	4.6
B-11	(\$\$-4)	6-8	11	12	9.4	4.8	8.7	2.9	ND(1.2)	6.2
B-11	(SS-6)	10-12	3.3	ND(5.9)	3.4	1.8	3.0	ND(2.0)	ND(1.2)	3.3
B-12	(SS-5)	8-10	0.83	ND(5.9)	2.7	1.3	3.6	2.8	ND(1.2)	5.8
B-13	(SS-1)	0-2	1,000	1,900	1,800	820	1,600	510	110	1,400
B-13	(SS-5)	8-10	74	250	75	33	93	88	12	1,400 48
B-14	(SS-2)	2.5-4.5	240	380	300	140	240	ND(75)	ND(44)	80
B-14	(SS-5)	8.5-10.5	210	700	290	120	320	32	19	190
B-15	(SS-5)	8-10	ND(0.78)	ND(5.8)	ND(0.78)	ND(0.78)	ND(0.78)	ND(2.0)	ND(1.2)	ND(2.0)
B-15	(SS-7)	12-14	ND(0.78)	ND(5.8)	ND(0.78)	ND(0.78)	0.93	ND(2.0)	ND(1.2)	
B-16	(\$\$-6)	10-12	9.5	14	20	6.8	9.7	ND(2.0)	ND(1.2)	2.7 22
B-17	(SS-2)	2-4	4,900	7,100	4,100	2,300	5,900	420	380	
B-18	(SS-1)	0-2	990	3,100	1,800	1,000	2,200	2,000	160	4,000
B-18	(SS-3)	4-6	170	620	410	200	400	670	30	1,700 310
B-19	(SS-4)	6-8	ND(470)	ND(470)	ND(470)	ND(470)	ND(470)	ND(470)	ND(470)	
B-20	(SS-4)	6-8	ND(440)	ND(440)	ND(440)	ND(440)	ND(440)	ND(440)	ND(440)	ND(470)
MW-1	(SS-1)	0-2				****	712(770)	112(440)	1412(440)	ND(440)
MW-1	(SS-5)	8-10	ND(330)	ND(330)	ND(330)	ND(330)	ND(330)	ND(330)	ND(330)	NID/220)
MW-2	(SS-1)	0-2		112(350)	115(050)	112(330)	112(330)	110(330)		ND(330)
MW-2	(SS-2)	2-4	ND(3,300)	ND(3,300)	ND(3,300)	ND(3,300)	ND(3,300)	ND(3,300)	ND(3,300)	NID/2 2001
MW-2	(SS-4A)	7.5-9.5			(5,500)	****	112(3,300)	112(3,300)		ND(3,300)
MW-3	(SS-1)	0-2					7*-			***
MW-3	(SS-4)	6-8			***			***		
MW-3	(SS-6)	10-12	ND(330)	ND(330)	ND(330)	ND(330)	ND(330)	ND(330)	NITY/12/0\	 >(D)(00.0)
MW-3D	(SS-6)	39-41	ND(0.85)	ND(6.3)	ND(0.85)	ND(0.85)	ND(0.85)	ND(2.1)	ND(330) ND(1.3)	ND(330) ND(2.1)

TABLE 3 (continued) SOIL ANALYTICAL RESULTS TPH & POLYNUCLEAR AROMATIC HYDROCARBON COMPOUNDS

Murphy's Waste Oil Service, Inc. 252 Salem Street Woburn, MA

Location	Samples	Depth	Benzo (a) anthracene	Chrysene	Benzo (b) fluoranthene	Benzo (k) fluoranthene	Benzo (a) pyrene	Indeno (1,2,3-cd) pyrene	Dibenzo (a,h) anthracene	Benzo (g,h,l) perylene
		(feet)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
MW-4	(SS-1)	0-2				***				
MW-4	(SS-5)	8-10						***	***	
MW-4	(SS-6)	10-12	ND(330)	ND(330)	ND(330)	ND(330)	ND(330)	ND(330)	ND(330)	ND(330)
MW-5S	(SS-1)	0-2						•••	115(550)	110(330)
MW-5S	(SS-6)	10-12	ND(330)	ND(330)	ND(330)	ND(330)	ND(330)	ND(330)	ND(330)	ND(330)
MW-6	(SS-1)	0-2	ND(3,200)	ND(3,200)	ND(3,200)	ND(3,200)	ND(3,200)	ND(3,200)	ND(3,200)	ND(3,200)
MW-6	(SS-8)	18-20			***					112(3,200)
MW-7	(SS-2)	25-45	300	220	320	170	400	140	34	350
MW-7	(SS-4)	6.5-8.5	1,500	1,600	1,600	890	2,000	450	220	1,200
MW-9	(SS-6)	10-12	ND(0.83)	ND(6.2)	ND(0.83)	ND(0.83)	ND(0.83)	ND(2.1)	ND(1.2)	ND(2.1)
MW-10	(SS-2)	17-19	100	130	120	62	160	23	20	160
MW-10	(SS-4)	29-31	ND(0.75)	ND(5.6)	ND(0.75)	ND(0.75)	ND(0.75)	ND(1.9)	ND(1.1)	ND(1.9)
MW-11	(SS-3)	4-6	34	41	37	16	37	15	ND(7.1)	53
MW-11	(SS-5)	8-10	4.1	7.1	4.3	2.1	5.1	ND(2.1)	ND(1.2)	4.5

- () = number in parentheses is laboratory Practical Quantitation Limit (PQL)
 ND = none detected above PQL
 ug/kg = micrograms per kilogram
 ---not analyzed for that parameter
 Results for MW-1, MW-2, MW-3, MW-4, MW-5S and MW-6 from October 1994

TABLE 4 SOIL ANALYTICAL RESULTS INORGANIC CONSTITUENTS

Murphy's Waste Oil Service, Inc. 252 Salem Street Woburn, MA

Location	Sample	Depth	Antimouy	Arrenic	Beryllium	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Selenium	Silver	Thellium	Zinc	Cyanide
		(feet)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
B-1	(SS-3)	4.5-6.5	ND(4)	ND(8)	ND(0.038)	ND(0.38)	11	5.8	,	ND(0.0708)	ND(1.1)	ND(8)	ND(0.86)	ND(10)	16	MTD(0,4)
B-1	(SS-5)	B.5-10.5	ND(4)	ND(7)	ND(0,036)	ND(0.36)	8.0	6.8	6	ND(0.0620)	ND(1.1)	ND(7)	ND(0.74)	ND(10)	15	ND(2.4)
B-2	(SS-3)	4.5-6.5	ND(3)	ND(8)	ND(0.039)	ND(0.39)	18	22	40	ND(0.0696)	ND(1.2)	ND(8)	ND(0.68)	ND(10)	17	ND(2.0)
B-4	(SS-1)	0-2	ND(3)	8	0.329	0.56	29	38	100	ND(0.0676)	13	ND(7)	ND(0.64)	ND(10)	49	ND(2.0)
B-4	(SS-6)	10-12	5	ND(8)	8.266	ND(0.38)	16	27	64	ND(0.0600)	11	ND(8)	ND(0.81)	ND(10)	84	ND(1.9)
B-6	(SS-5)	8-10	ND(4)	ND(7)	0.222	ND(0.37)	11	12	19	ND(0.0667)	5.9	ND(7)	ND(0.75)		36	ND(1.5)
B-7	(SS-5)	8-10	ND(4)	ND(7)	8.109	ND(0.36)	6.1	3.6	ND(4)	ND(0.0639)	3.2	ND(7)		ND(10)	24	ND(2.1)
B-8	(SS-1)	0-2	ND(4)	10	8,309	0.83	24	48	1,900	0.3167	17	ND(6)	ND(0.77)	ND(10)	9.7	ND(2,4)
B-A	(SS-4)	6-8	ND(3)	ND(8)	0.205	ND(0.41)	5.8	1.9	10	ND(0.0818)	ND(1.2)	ND(8)	ND(0.70)	ND(9)	70	ND(1.9)
B-9	(SS-5)	8-10	ND(3)	ND(8)	0.122	ND(0.41)	5.1	3.9	5	ND(0.0692)	ND(1.2)	ND(8)	ND(0.66)	ND(10)	6.6	ND(1.5)
B-10	(SS-6)	10-12	ND(4)	ND(7)	0.073	ND(0.36)	4.8	2.8	4	ND(0.0745)	3.3	ND(7)	ND(0.70)	ND(10)	7.7	ND(1.4)
B-11	(SS-4)	6-8	5	ND(7)	6.148	ND(0.36)	5.8	3.4	ND(4)	ND(0.0603)	ND(1.1)		ND(0.86)	ND(10)	7.9	ND(1.8)
B-11	(SS-6)	10-12	ND(4)	ND(5)	6.165	ND(0.26)	5.7	5.2	ND(3)	ND(0.0681)	ND(0.79)	ND(7)	ND(0.70)	ND(10)	6.9	ND(1.5)
B-12	(SS-5)	¥-10	ND(3)	ND(6)	0.162	ND(0.32)	10	5.2	20	ND(0.0644)	5.2	ND(5)	ND(0.73)	ND(8)	7.1	ND(1.9)
B-13	(SS-1)	0-2	ND(2)	9	6.232	0.43	15	16	70	0.5339	8.9	ND(6)	ND(0.63)	ND(10)	24	ND(1.9)
B-13	(SS-5)	1-10	ND(3)	ND(7)	0.140	ND(0.35)	6.5	6.1	íð	ND(0.0773)	3.1	ND(7)	ND(0.47)	ND(10)	57	ND(1.8)
B-14	(SS-2)	2.5-4.5	ND(4)	ND(7)	ND(0.035)	ND(0.35)	7.8	20	170	0.1521	2.5	ND(7)	ND(0.68)	ND(10)	15	ND(1.3)
B-14	(55-5)	8.5-10.5	ND(4)	ND(6)	ND(0.032)	ND(0.32)	9.4	12	60	ND(0.0653)	1.3	ND(7)	ND(0.81)	ND(10)	48	ND(1.4)
B-15	(SS-5)	1-10	ND(4)	ND(8)	ND(0.038)	ND(0.38)	9.6	4.2	ND(4)	ND(0.0743)	2.6	ND(6)	ND(0.75)	ND(10)	25	ND(1.4)
B-15	(SS-7)	12-14	ND(4)	ND(8)	ND(0.039)	ND(0.39)	6.6	4.6	ND(4)	ND(0.0676)	2.2	ND(8)	ND(0.77)	ND(10)	9.8	ND(1.7)
B-16	(SS-6)	10-12	ND(3)	ND(7)	ND(0.034)	ND(0.34)	6.9	3.5	11(4)	ND(0.0672)		ND(8)	ND(0.85)	ND(10)	Ш	ND(2.0)
B-17	(\$S-2)	2-4	5	ND(7)	0.460	0.43	22	27 6	120	0.0804	ND(1.0) 13	ND(7)	ND(0.67)	ND(10)	10	ND(1.9)
B-18	(SS-1)	0-2	ND(3)	ND(5)	0.243	3.5	24	23	564	9.4508	13	ND(7)	ND(0.62)	ND(10)	120	N12(2.3)
B-16	(33-1) (SS-3)	4-6	ND(3)	ND(5)	0.203	0.23	5. 4	4.7	48	ND(0.0508)	ND(0.68)	ND(3)	ND(0.60)	10	68	NIX(2.2)
B-19	(SS-4)	6-8	ND(3)	ND(7)	ND(0.036)	ND(0.36)	33	34	240	0.0565	2.4	ND(5)	ND(0.68)	ND(7)	14	ND(2.4)
B-20	(55-4)	6-B	ND(3)	ND(6)	ND(0.031)	ND(0.31)	14	28	268	ND(0.0601)	5.6	ND(7)	ND(0.59)	NIX(10)	37	ND(1.9)
		8-10		ND(6)	ND(0.031)	0.37	iš	21	7			ND(6)	ND(0.62)	ND(9)	55	NIX(1.9)
MW-1	(SS-5)		ND(3)		ND(0.035)	0.37 0.42	20	28	4	ND(0.0636) 9.1579	8.1	ND(6)	ND(0.65)	ND(9)	34	ND(1.1)
MW-2	(SS-2)	2-4	ND(3)	7	0.067				ND(3)		9.0	ND(7)	ND(0.69)	ND(10)	56	ND(1.1)
MW-3	(SS-6)	10-12	ND(3)	ND(7)		ND(0.34)	3.9	1.8	(c) N	ND(0.0718)	ND(1.0)	ND(7)	ND(0.50)	ND(10)	5.5	ND(1.1)
MW-3D	(SS-6)	39-41	ND(3)	6	0.264 NEXA \$200	ND(0.29)	9.1	8.6	**************************************	ND(0.0855)	6.7	ND(6)	ND(0.55)	ND(9)	14	ND(1.1)
MW-4	(SS-6)	10-12	ND(4)	ND(6)	ND(0.029)	ND(0.29)	4.9	1.9	ND(3)	ND(0.0622)	ND(0.88)	ND(6)	ND(0.80)	ND(9)	8.0	ND(1.1)
MW-55	(88-6)	10-12	ND(3)	ND(5)	ND(0.025)	8.38	13	30	4	ND(0.0640)	5.0	ND(5)	ND(0.56)	ND(7)	27	ND (1.0)
MW-6	(SS-1)	0-2	5	ND(7)	ND(0.034)	0.55	20	28	130	0.1533	7.5	ND(7)	ND(0.71)	ND(10)	9 7	ND(1.0)
MW-7	(SS-2)	2.5-4.5	ND(4)	ND(8)	ND(0.038)	ND(0.38)	13	28	120	ND(0.0754)	ND(1.1)	ND(8)	ND(0.78)	ND(10)	61	ND(2.1)
MW-7	(SS-4)	6.5-8.5	ND(4)	ND(6)	ND(0.032)	ND(0.32)	32	19	246	0.0792	9.3	ND(6)	ND(0.82)	ND(9)	88	ND(1.9)
MW-9	(\$3-6)	10-12	ND(4)	ND(8)	6.127	ND(0.42)	6.0	3.0	ND(4)	ND(0.0742)	ND(1.3)	ND(8)	ND(0.79)	ND(10)	7.8	ND(2.0)
MW-10	(SS-2)	17-19	ND(2)	ND(4)	0.260	0.24	17	23	10	ND(0.0595)	13	ND(4)	ND(0.41)	ND(7)	38	ND(2.1)
MW-10	(53-4)	29-31	3	ND(4)	6.246	0.31	15	28	9	ND(0.0559)	14	ND(4)	ND(0.57)	ND(7)	37	ND(1.8)
MW-11	(55-3)	4-6	6	ND(#)	ND(0.038)	ND(0.38)	404	13	20	ND(0.0585)	ND(1.1)	ND(8)	ND(0.76)	ND(10)	41	ND(1.5)
MW-11_	(\$\$-5)	8-10	ND(4)	ND(7)	ND(0.033)	ND(0.33)	38	1.5	4	ND(0.0463)	ND(1.0)	ND(7)	ND(0.78)	ND(10)	11	ND(1.7)

- () = number in parantheses is laboratory Practical Quantitation Limit (PQL).

 mg/kg milligrams per kilogram

 ND = below PQL

 Results for MW 1, MW-2. MW-3, MW-4, MW-55 and MW-6 from October 1994 2. 3. 4.

TABLE 5 WETLAND SAMPLING DATA SUMMARY

Murphy's Waste Oil Service, Inc. 252 Salem Street Woburn, Massachusetts

Station ID	HNU (ppm)	Soil Description	Surrounding Area Description
P-1	<1	Dark brown fine SAND; and Silt; some organic matter.	Standing water, tree and scrub vegetation
P-2	<1	Dark brown fine SAND; and Silt; some organic matter. Strong organic odor.	Standing water, tree and scrub vegetation
P-3	<1	Durk to light brown fine SAND; and Silt.	Standing water, open area with cattails
P-4	<1	Dark brown to brownish-gray fine SAND; and Silt.	Standing water, reeds and scrub vegetation
P-5	<1	Dark brown fine SAND; and Silt; some organic matter.	Standing water, cattails and trees, plastic pail debris
P-6	<1	Dark to light brown fine SAND; and Silt.	Standing water, cattails and reeds
P-7	<1	Dark brown fine SAND; and Silt; some organic maner.	Standing water, open area
P-9	<1	Dark brown fine SAND; and Silt; some organic matter.	Standing water, cattails and reeds
P-10	</td <td>Dark brown to brownish-gray fine SAND; and Silt.</td> <td>Standing water, open area with reeds</td>	Dark brown to brownish-gray fine SAND; and Silt.	Standing water, open area with reeds
P-11	<1	Dark brown fine SAND; and Silt, some organic matter.	Standing water, tree and scrub vegetation
P-12		Dark brown fine SAND; and Silt, some organic matter. Heavily stained soil with strong petroleum odor.	Standing water, scrub vegetation
P-13	<1	Dark brown fine SAND; and Silt; some organic matter.	Standing water, tree and scrub vegetation
P-14	<1	Dark brown fine SAND; and Silt; some organic matter.	Standing water, tree and scrub vegetation
P-15		Dark brown fine SAND; and Silt; some organic matter. Heavily stained soil with strong petroleum odor.	Standing water, open area
P-17	<1	Dark brown fine SAND; and Silt; some organic matter.	Standing water, tree and scrub vegetation
P-18		Durk brown fine SAND; and Silt; some organic matter. White ceramic (7) material in sample.	Standing water, tree and scrub vegetation
P-19	<1	Brown fine SAND; and Silt; some organic matter.	Dry ground, grass and scrub vegetation
P-20	<1	Dark brown fine SAND; and Silt; some organic matter.	Standing water, cattails and reeds
P-21	<1	Dark brown fine SAND; and Silt; some organic matter;	Standing water, tree and scrub vegetation
P-22	<1	Light brown medium to fine SAND; trace gravel; trace organic matter	Dry ground, gravel fill, tree vegetation
P-23	<1	Brown medium to fine SAND; and organic matter.	Standing water, reed and scrub vegetation, hydrogen sulfide odor
P-24	<1	Dark brown medium to fine SAND; and Silt; some organic matter	Standing water, reed and scrub vegetation,
P-25	<1	Dark brown medium to fine SAND; and Silt; some organic matter	Standing water, reed tree and scrub vegetation
P-26	<1	Dark brown medium to fine SAND; and Silt; some organe matter	Standing water, tree and scrub vegetation
P-27	<1	Dark brown fine SAND; and Silt; some organic matter.	Standing water, open area with cattail and reeds
P-28	<1	Dark brown fine SAND; and Silt; some organic matter.	Wet ground, reed and tree vegetation
P-29	<1	Dark to light brown fine SAND; and Silt; some organic matter	Standing water, open area with reed vegetation
P-30	<1	Dark brown fine SAND; and Silt; some organic matter.	Standing water, open area with cattail and reed vegetation

^{1.} Samples P-1 through P-30 collected on 11/16/95.

^{2.} All samples collected at a depth of 6 inches to 18 inches below grade. Disk 3621

TABLE 6 SOIL ANALYTICAL RESULTS INITIAL WETLAND SAMPLING

Murphy's Waste Oil Service, Inc. 252 Salem Street Woburn, MA

		Trank	Total	Total
Location	ТРН	Total PCB	Chromium	Lead
· · · · · · · · · · · · · · · · · · ·	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
P-I	44	3.3	76	90
P-2	92	2.7	56	80
P-3	320	3.1	210	140
P-4	40	15	45.1	30
P-5	610	69	280	1,700
P-6	620	6.7	500	620
P-7	3,900	8.9	800	2,700
P-9	140	5.7	110	100
P-10	610	5.4	290	1,400
P-11	4,100	8.5	180	730
P-12	82,000	60	340	24,900
P-13	550	37	400	190
P-14	20,000	11 *	820	16,800
P-15	38,000	24 *	1,100	1,700
P-17	330	5.9	1,000	270
P-18	24,000	13 *	970	3,200
P-19	770	3.1 *	2,000	1,500
P-20	69	0.8 +	190	70
P-21	2,100	1.4 *	1,800	600
P-22	110	0.4 *	230	70
P-23	11,000	10	21,300	2,500
P-24	540	1.0 •	62,500	3,300
P-25	260	2.9	12,400	380
P-26	270	6.6 *	66,500	1,400
P-27	230	0.2 *	14,000	600
P-28	22	ND (1.3)	3,100	90
P-29	130	0.2 *	760	120
P-30	77	ND (0.2)	9,400	280
P-31			1,500	
P-32			7,500	
SW-1	72	ND (0.1)	5,700	130
SW-2	97,000	220	1,100	35,100
SW-3	620	15	430	1,000
SW-4	74	0.8*	93	630

- Total Petroleum Hydrocarbons (TPH) by Gas Chromatogram/Flame Ionization Detector. All samples collected at a depth of 0-2 feet below grade. 1)
- 2)
- 3) All PCBs detected are Aroclor 1254 except those marked with an asterisk(*), which are Aroclor 1260.

⁴⁾ --= Not analyzed.

TABLE 7

SOIL ANALYTICAL RESULTS ADDITIONAL WETLAND SAMPLING

Murphy's Waste Oil Service, Inc. 252 Salem Street Woburn, MA

			Inorganics		VOCs		-			
Location	Sample Date	Arsenic	Cadmium	Amenable Cyanide	Total Xylenes	Benzo(a) Pyrene	Benzo(b) Fluoranthene	Fluoranthene	Pyrene	Pesticides
		(mg/kg)	(mg/kg)	(mg/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(mg/kg)
P-12	12/18/95	ND (10)	ND (0.65)	ND (8.0)	53,000	ND (11,000)	ND (11,000)	ND (11,000)	ND (11,000)	ND(8)
P-24	12/18/95	ND (20)	ND (0.79)	ND (1.0)	ND (250)	ND (880)	ND (880)	ND (880)	ND (880)	ND(1)
P-26	12/18/95	ND (20)	ND (1.0)	ND (1.2)	ND (230)	ND (1,200)	ND (1,200)	ND (1,200)	ND (1,200)	ND(12)
SW-1	10/13/94	ND (10)	ND (0.55)	ND (0.5)	ND (5)	340	680	640	430	ND(0.5)
SW-2	10/14/94	ND (10)	11	ND (0.5)	1,300	ND (66,000)	ND (66,000)	ND (66,000)		ND(0.5)
SW-2	12/18/95	***	***	•		ND (9,800)	ND (9,800)	ND (9,800)	ND (9,800)	
SW-3	10/14/94	ND (10)	2.9	ND (0.5)	ND (5)	ND (1,600)	ND (1,600)	ND (1,600)	ND (1,600)	ND(0.5)
SW-4	10/13/94	10	2.0	ND (0.5)	ND (5)	ND (1,600)	2,000	2,000	ND (1,600)	ND(0.5)

- --- = Not analyzed.
 All samples collected at a depth of 0-2 feet below grade.
 ND = None detected above method Practical Quantitation Limit (PQL).
 Only those PAHs detected are shown.

TABLE 8
WATER LEVEL DATA

	<u>Location</u>												
Date	MW-1	MW-2	MW-3	MW-3D	MW-4	MW-5S	MW-5D	MW-6	MW-7	MW-8			
11/9/94	43.54	43.56	43.53		43.41	43.46	43.48	43.52	•••				
12/13/94	45.04	44.80	45.05		44.93	44.74	44.74	44.67	***				
9/15/95	42.37	42.39	42.04		42.15	42.35	42.35	42.33	***				
10/9/95	44.11	43.76	44.27	43,93	44.31	43.87	43.64	43.67	43.71				
10/19/95	43.46	43.43	43.64	43.44	43.52	43.40	43.42	43.36	43.41	***			
10/27/95	43.85	43.76	43.98	43.78	43.95	43.73	43.69	43.67	43.76	43.78			
11/7/95	44.10	44.03	44.24	44.04	44.1B	43.99	44.03	43.95		44.04			
11/17/95	45.82	45.15	45.39	45.46	45.39	45.21	45.13	44.96	••	45.23			
12/4/95	44.44	44.48	44.36	44.41	44.30	44.36	44.16	44.42		44.47			
12/18/95	44.32	44.38	44.20	44.23	44.14	44.25	44.16	44.32	44.34	44.37			
3/7/96	45.28	45.26	45.04	46.12	45.14	45.09	44.90	45.19	45.17	45.24			
(Reference Elev.)	(53.29)	(53.85)	(52.86)	(52.41)	(52.29)	(53.88)	(54.06)	(55.71)	(50.44)	(54.32)			

TABLE 8 (continued)

WATER LEVEL DATA

	<u>Location</u>												
Date	MW-9	MW-10	MW-11	MW-12	MW-13	MR-1SS	MR-2SS	SW-A	SW-B	SW-C			

11/9/94			***			43.20	43,55		***				
12/13/95	***	***		***	•••	44.93			***				
9/15/95	***				***	42.05	42.33	***					
10/9/95	44.18	***	44.01	44.82	44.49		43.86	44.76	44.69				
10/19/95	43.44	43.48	43.19	43.47	43.87	43.28	43.37		44.17				
10/27/95	43.88	43.82	43.69	43.96	44.19	43.81	43.75		44.40				
11/7/95	44.11	44.08	43.87	44.38	44.51	44.01	43.99	•••	44.58	***			
11/17/95	45.48	45,56	45.35	45.38	45.29	45.65	45.48	45.12	45.17				
12/4/95	44.27	44.47	44.03	44.35	44.44	44.03	44.38		44.60				
12/18/95	44.16	44.36	43.86	43.99	44.22	43.97	44.26			44.66			
3/7/96	45.06	45.28	44.86	44.96	44.94	44.93	45.16	44.98	45.01	44.89			
Reference Elev.)	(51.82)	(53.84)	(50.04)	(47.29)	(46.42)	(51.62)	(50.80)	(47.22)	(46.42)	(46.46)			

TABLE 8 (continued)

WATER LEVEL DATA

Murphy's Waste Oil Service, Inc. 252 Salem Street Woburn, Massachusetts

					Location				
Date	MW-4S Whitney Barrel	MW-4M Whitney Barrel	MW-4D Whitney Barrel	BW-2 Wildwood	BW-2R Wildwood	BSW-2 Wildwood	BW-3 Wildwood	BW-4 Wildwood	OW-2 Conn. Mutual
11/9/94							***		•••
12/13/95		***	***				***		
9/15/95	***			***			-		
10/9/95				***		***	***	~~=	
10/19/95		***	***	***			***		
10/27/95	43.47	43.43	43.71	43.05	43.53	43.47	43.50	43.74	
11/7/95	***								
11/17/95	45.03	44.91					45.00	45.43	
12/4/95	43.87	43.90	***	43.38	43.93	43.82	43.93	44.29	44.39
12/18/95		***					43.83	44.15	44.25
3/7/96	44.49	44.34	44.69	***			44.43	44.99	45.26
Reference Elev.)	(46.53)	(46.91)	(47.59)	(46.82)	(47.78)	(48.04)	(47.38)	(46.46)	(76.19)

NOTES:

^{1.} Reference elevations are PVC rim except MR-1SS, MW-12, MW-13, SW-A, SW-B, SW-C, BW-2, BSW-2, MW-4 and OW-2 (protective casing rim).
2. --- indicates well not installed, data point dry or otherwise not gauged.

TABLE 9
VERTICAL HYDRAULIC GRADIENT CALCULATIONS

Murphy's Waste Oil Service, Inc. 252 Salem Stret Woburn, Massachusetts

	MW-3			MW-5				MW-10			MW-12			MW-13		
Date	ΔΗ	ΔΥ	i	ΔΗ	ΔΥ	i	ΔΗ	ΔΥ	i	ΔΗ	ΔΥ	i	ΔΗ	ΔΥ	i	
	feet	feet	%	feet	feet	%	feet	feet	%	feet	feet	%	feet	feet	%	
11/9/94		37.5	•••	0.02	69	0.0		28			3.8			3.8		
12/13/94		37.5		0	69	0.0		28			3.8			3.8		
9/15/95		37.5		0	69	0.0		28			3.8			3.8		
10/9/95	-0.34	37.5	-0,9	-0.23	69	-0.3		28		0.06	3.8	1.6	-0.2	3.8	-5.3	
10/19/95	-0.2	37.5	-0.5	0.02	69	0.0	0.11	28	0.4		3.8		-0.3	3.8	-7.9	
10/27/95	-0.2	37.5	-0.5	-0.04	69	-0.1	0.07	28	0.3		3.8		-0.21	3.8	-5.5	
11/7/95	-0.2	37.5	-0.5	0.04	69	0.1	0.09	28	0.3	•••	3.8		-0.07	3.8	-1.8	
11/17/95	0.07	37.5	0.2	-0.08	69	-0.1	0.08	28	0.3	0.26	3.8	6.8	0.12	3.8	3.2	
12/4/95	0.05	37.5	0.1	-0.08	69	-0.1	0.09	28	0.3		3.8	***	-0.16	3.8	-4.2	
12/18/95	0.03	37.5	0.1	-0.09	69	-0.1	0.1	28	0.4		3.8			3.8		
3/7/96	1.08	37.5	2.9	-0.19	69	-0.3	0.12	28	0.4	-0.02	3.8	-0.5	-0.07	3.8	-1.8	

- 1. Vertical gradients were calculated for well clusters MW-3/MW-3D; MW-5S/MW-5D; MR-2SS/MW-10; and groundwater relative to surface water at MW-12/SW-A and MW-13/SW-B.
- 2. The parameters are defined as:
 - $\Delta H = Change in head$
 - $\Delta Y = Vertical difference between screened interval$
 - $i = Vertical gradient in percent = \Delta H/\Delta Y$

TABLE 10 AQUIFER TESTING DATA SUMMARY

Murphy's Waste Oil Service, Inc. 252 Salem Street Woburn, Massachusetts

WELL	L (ft)	L (cm)	r (cm)	R (cm)	To (sec)	K (cm/sec)	i (ftvert/fthor)	Vx (ft/day)
MW-8	2.80	85.3	2.6	10.2	3.0	2.85E-02	0.002	0.65
MW-9	5.40	164.6	2.6	10.2	5.0	1.16E-02	0.002	0.26
MW-10	5.00	152.4	2.6	10.2	5.2	1.18E-02	0.002	0.27
MW-11	5.99	182.6	2.6	10.2	2.4	2.25E-02	0.002	0.51
MW-12	3.00	91.4	1.7	2.0	19.2	3.14E-03	0.002	0.07
MW-13	3.00	91.4	1.7	2.0	25.5	2.37E-03	0.002	0.05

Hydraulic conductivity (K) was calculated using the Hvorslev method which is valid for unconfined conditions where the length of the well screen is greater than eight times the effective radius of the well screen. K was calculated by the formula:

$$K = \frac{r \ln(L/R)}{2LT_o}$$

Where:

K is hydraulic conductivity

r is the radius of the well casing

R is the effective radius of the well screen (or soil boring)

L is the average length of well screen through which water passes during the test

To is the time it takes for the water level to rise 37 percent of the initial change

Average linear velocities were calculated using measured hydraulic conductivity, hydraulic gradients and an assumed value of effective porosity, using the equation:

$$V = \frac{Ki}{\Pi_a}$$

Where:

Vx is average linear velocity

i is hydraulic gradient

ne is effective porosity of sediments = 0.25

References:

Dunne, T. and Leopold, L.B., 1978. Water in Environmental Planning, W.H. Freeman and Company.

Freeze, R.A. and J.A. Cherry, 1979. Groundwater, Prentice-Hail, Inc.

Fetter, C.W., 1988. Applied Hydrogeology, Second Edition, Merrill Publishing Company.

TABLE 11
Field Data

November 7, 1995

Murphy's Waste Oil Service, Inc. 252 Salem Street Woburn, Massachusetts

Location	Well Depth	Reference Elevation	Water Level	Water Elevation	Water Temp	Specific Conductance	рН
	(feet)	(feel)	(feet)	(fees)	(Centigrade)	(µmhos/cm)	
MW-1	15.0	53.29	9.19	44.10	12.4	460	6.2
MW-2	15.0	53.85	9.82	44.03	12.6	626	6.1
MW-3	14.0	52.86	8.62	44.24	13.3	353	5.5
MW-3D	49.0	52.41	- 8.37	44.04	12.3	791	6.3
MW-4	15.0	52.29	8.11	44.18	14.3	302	6.1
MW-5S	15.0	53.88	9.89	43.99	14.6	530	6.2
MW-5D	83.5	54.06	10.03	44.03	14.7	1,150	7.3
MW-6	18.0 '	55.71	11.76	43.95	11.9	647	6.1
MW-7	12.0	50.44			_	-	
MW-8	12.0	54.32	10.28	44.04	14.3	632	6.4
MW-9	12.0	51.83	7.71	44.11	14.8	486	5.7
MW-10	41.0	53.84	9.76	44.08	13.9	299	6.3
MW-11	12.0	50.04	6.17	43.87	13.6	8,600	6.1
MW-12	5.4	47.29	2.91	44.38	9.6	6,390	6.5
MW-13	5.3	46.42	1.91	44.51	7.1	1,200	6.3
MR-1SS	13.0	50.34	7.61	44.01	14.3	447	6.0
MR-2SS	15.0	50.80	6.81	43.99	14.5	996	6.3

NOTES:

- 1. Well reference elevations determined at top of PVC well rim, measured in feet relative to benchmark (pin in power pole = 51.38 feet NGVD).
- 2. Well depth in feet below standpipe/roadbox rim.
- 3. Water level measured from reference elevation down to water level.
- 4. Conductivity in micromhos per centimeter corrected to 25 degrees Centigrade.

TABLE 12 Field Data

December 18, 1995

Murphy's Waste Oil Service, Inc. 252 Salem Street Woburn, Massachusetts

Location	Weli Depth	Reference Elevation	Water Level	Water Elevation	Water Temp	Specific Conductance	рН
	(feet)	(feet)	(feet)	(feet)	(Centigrade)	(µmhos/cm)	
MW-1	15.0	53.29	8.79	44.32	9.3	529	6.0
MW-2	15.0	53.85	9.47	44.38	8.8	570	5.9
MW-3	14.0	52.86	8.66	44.20	10.3	332	5.4
MW-3D	49.0	52.41	8.18	44.23	10.6	569	6.1
MW-4	15.0	52.29	8.15	44.14	8.9	340	5.8
MW-5S	15.0	53.88	9.63	44.25	11.0	10	6.1
MW-5D	83.5	54.06	9.90	44.16	9.0	5	6.3
MW-6	18.0	55.71	11.39	44.32	10.7	646	5.8
MW-7	12.0	50.44	6.10	44.34	11.7	1,656	6.3
MW-8	12.0	54.32	9.95	44.37	10.6	694	6.2
MW-9	12.0	51.83	7.66	44.16	9.7	316	5.8
MW-10	41.0	53.84	9.48	44.36	10.7	669	6.2
MW-11	12.0	50.04	6.18	43.86	10.0	815	5.6
MW-12	5.4	47.29	3.30	43.99	5.6	446	6.5
MW-13	5.3	46.42	2.20	44.22	4.9	352	6.3
MR-1SS	13.0	50.34	7.65	43.97	9.9	269	6.1
MR-2SS	15.0	50.80	6.54	44.26	11.5	901	6.0

NOTES:

- 1. Well reference elevations determined at top of PVC well rim, measured in feet relative to benchmark (pin in power pole = 51.38 feet NGVD).
- Well depth in feet below standpipe/roadbox rim.
- Water level measured from reference elevation down to water level.
- 4. Conductivity in micromhos per centimeter corrected to 25 degrees Centigrade.

TABLE 13

GROUNDWATER AND SURFACE WATER ANALYTICAL RESULTS
VOLATILE ORGANIC COMPOUNDS

MW-1	Location	Date	Benzene	Tolvene	Total Xylenes	Acetone	Chioro- ethane	PCE	1,1-DCA	1,1,1-TCA	TCE	412 DCB	Vinyl	2 B .
MW-1 11/8/5 ND (5) ND (5) ND (5) ND (5) ND (20) ND (10) ND (5) ND (5) ND (5) ND (5) ND (5) ND (20) ND (10) ND (5) ND (5) ND (5) ND (5) ND (5) ND (20) ND (20) ND (10) ND (20) ND (t-1,2-DCE	Chloride	2-Butanone
11/795 ND (5) ND (5) ND (5) ND (5) ND (20) ND (10) ND (10) ND (5) ND (5) ND (5) ND (5) ND (5) ND (6)			1.12.12	197	1-0-7	(-6.4)	1-67	170.7	(-0/	1-6'-7	(48/1)	(18/1)	(ugii)	(<i>ug/1</i>)
11/895 ND (5) ND (5) ND (5) ND (5) ND (20) ND (10) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (20) ND (20)	MW-1		ND (5)	ND (5)		ND (20)			ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (20)
12/18/95 ND (5) ND (5) ND (5) ND (20) ND (10) ND (5) ND (20) ND (20) ND (10) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (20)	•	11/7/95	ND (5)	ND (5)	ND (5)	25	ND (10)	ND (5)						
MW-2 11994 ND (5) ND (5) ND (5) ND (5) ND (5) ND (6		12/18/95	ND (5)	ND (5)	ND (5)	ND (20)	ND (10)							
11/7/95 ND (5)				•			•		` '	` ,	(-,	112 (4)	(10)	112 (20)
11/7/95 ND (3) ND (5)	MW-2	11/9/94	ND (5)	ND (5)	ND (5)	ND (20)	ND (10)		ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (20)
12/18/95 ND (5)		11/7/95	ND (5)	ND (5)	ND (5)	24	ND (10)	ND (5)	ND (5)	ND (5)				
MW-3		12/18/95	ND (5)	ND (5)	ND (5)	ND (20)	ND (10)	ND (5)	ND (5)					
117/95 ND (330)														
12/18/95 ND (25) ND	MW-3								_					ND (50)
12/18/95 ND (25) ND (25) ND (25) ND (25) ND (25) ND (25) ND (100) ND (500) ND (250) ND (,		ND(130)		140	2,200	ND(250)	ND(500)
MW-3D 11/1/95 ND (5) N		12/18/95	ND (25)	ND (25)	ND (25)		ND (50)		170		220	3,100	ND (50)	
12/18/95 ND (5) ND (5) ND (5) ND (20) ND (10) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (20) ND (10) ND (20) ND (10) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (10) ND (20) ND (10) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (10) ND (20) ND (10) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (10) ND (20) ND (10) ND (5)	(Blind Dup.)	12/18/95	ND (250)	ND (250)	ND (250)	ND (1,000)	ND (500)	ND (250)	250	360	400	5,300		
12/18/95 ND (5) ND (5) ND (5) ND (20) ND (10) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (20) ND (10) ND (20) ND (10) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (10) ND (20) ND (10) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (10) ND (20) ND (10) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (10) ND (20) ND (10) ND (5)	1 511 AB) (F)	NID (6)	NTS (5)		ND /10)	NITS (5)	NID (C)	177 (5)				
MW-4 11/9/94 ND (5) ND (5) ND (5) ND (20) ND (10) ND (5) ND (5) ND (5) ND (5) ND (5) ND (10) ND (20) ND (10) ND (5) ND (5) ND (5) ND (5) ND (5) ND (10) ND (20) ND (10) ND (20) ND (10) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (10) ND (20) ND (10) ND (5) ND (מג-אש													
11/7/95 ND (5) ND (5) ND (5) ND (5) ND (20) ND (10) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (10) ND (20) ND (10)		12/18/95	ND (2)	ND (2)	ND (2)	ND (20)	ND (10)	MD (2)	ND (2)	ND (5)	ND (5)	ND (5)	ND (10)	ND (20)
11/7/95 ND (5) ND (5) ND (5) ND (5) ND (20) ND (10) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (10) ND (20) ND (10)	MW-4	11/9/94	ND (5)	ND (5)	ND (5)	ND (20)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (IO)	ND (20)
12/18/95 ND (5) ND (5) ND (5) ND (20) ND (10) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (20) ND (20) ND (10) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (10) ND (20) ND (10) ND (5)	*****													
MW-5S 11/9/94 ND (5) ND (5) ND (5) ND (5) ND (20) ND (10) ND (5) ND (5) ND (5) ND (5) ND (5) ND (10) ND (20) ND (10) ND (20) ND (10) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (10) ND (20) ND (10) ND (20) ND (10) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (10) ND (20) ND (10) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (10) ND (20) ND (10) ND (20) ND (10) ND (5) ND														
11/7/95 ND (5) ND (5) ND (5) ND (20) ND (10) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (6)		12/10/73	115 (3)	.,,,	.,	(20)	()	1 (5)	112 (2)	112 (5)	,115 (5)	110 (3)	NO (10)	1415 (20)
11/7/95 ND (5) ND (5) ND (5) ND (20) ND (10) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (6)	MW-5S	11/9/94	ND (5)	ND (5)	ND (5)	ND (20)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (20)
12/18/95 ND (5) ND (5) ND (5) ND (20) ND (10) ND (5) ND (5) ND (5) ND (5) ND (5) ND (6) ND (6) ND (20) ND (20) ND (10) ND (5) ND (5) ND (5) ND (5) ND (5) ND (10) ND (20) ND (11///95 ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (20) ND (20) ND (10) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (20) ND (20) ND (10) ND (5) ND	*						ND (10)							
MW-5D 11/9/94 ND (5) ND (5) ND (5) ND (20) ND (10) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (10) ND (20) ND (11/19/95 ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (20) ND (10) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (10) ND (20) ND (10) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (10) ND (20) ND (10) ND (5														
11//95 ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (20) ND (20) ND (10) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (20) ND (••, ••, ••	··- (-)	· (-,	\ \ . _						(-,	(.,	115 (10)	110 (20)
12/18/95 ND (5) ND (5) ND (5) ND (20) ND (10) ND (5) ND (5) ND (5) ND (5) ND (5) ND (6) ND (6) ND (6) ND (6) ND (7	MW-5D												ND (10)	ND (20)
12/18/95 ND (5) ND (5) ND (5) ND (20) ND (10) ND (5) ND (5) ND (5) ND (5) ND (5) ND (10) ND (20) MW-6 11/9/94 ND (5) ND (20) 12/18/95 ND (5) ND (5) ND (25) ND (25) ND (25) ND (26) ND (50) ND (50) ND (25) ND (25) ND (25) ND (25) ND (26) ND (20) MW-7 12/18/95 ND (25) ND (25) ND (25) ND (25) ND (100) ND (50) ND (25) ND (25) ND (25) ND (25) ND (25) ND (50) ND (100) MW-8 11/7/95 ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (20)		11/7/95	ND (5)	ND (5)	ND (5)		ND (10)				ND (5)	ND (5)	ND (10)	
11/795 ND (5) ND (5) ND (5) 32 ND (10) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (10) ND (20) ND (10) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (10) ND (20) ND (20) ND (20) ND (25) ND (25) ND (25) ND (25) ND (25) ND (25) ND (25) ND (25) ND (25) ND (26) ND (26) ND (27) ND (28) ND (28) ND (29) ND (29) ND (29) ND (29) ND (20) ND (12/18/95	ND (5)	ND (5)	ND (5)	ND (20)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	
11/795 ND (5) ND (5) ND (5) ND (5) ND (10) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (10) ND (20) ND (20) ND (20) ND (20) ND (20) ND (25) ND (25) ND (25) ND (25) ND (25) ND (25) ND (25) ND (25) ND (25) ND (26) ND (26) ND (27) ND (28) N			ND 45	N/D (6)	NID (6)	ND (20)	NID (10)	NID (6)	NID (E)	ND (6)	ND (6)	ND (6)	ND (10)	ND (00)
12/18/95 ND (5) ND (5) ND (5) ND (20) ND (10) ND (5) ND (5) ND (5) ND (5) ND (5) ND (6) ND (20) ND (20) ND (20) ND (25) ND (25) ND (25) ND (25) ND (25) ND (25) ND (25) ND (25) ND (25) ND (25) ND (25) ND (25) ND (26) ND (27) ND (27) ND (28	MW-6												,	
MW-7 12/18/95 ND (25) ND (25) ND (25) ND (100) ND (50) ND (25) ND (25) ND (25) ND (25) ND (25) ND (50) ND (50) ND (100) MW-8 11/7/95 ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (20)			• • •											, ,
MW-8 11/7/95 ND (5) ND (5) ND (5) 29 ND (10) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) ND (20)		12/18/95	(כ) מא	MD (2)	MD (2)	ND (20)	ND (10)	(c) GN	ND(3)	ND (3)	ND (3)	MD (2)	ND (10)	ND (20)
MW-8 11/7/95 ND (5) ND (5) ND (5) 29 ND (10) ND (5) ND (5) ND (5) ND (5) ND (5) ND (10) ND (20)	MW-7	12/18/95	ND (25)	ND (25)	ND (25)	ND (100)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (50)	ND (100)
THE AND ASSESSED ASSE	*****		(23)	()	(-2)	()	()		(23)	(22)	**** (=0)	(20)	112 (30)	1112 (100)
AND AND AND AND AND AND AND AND AND AND	MW-8	11/7/95	ND (5)	ND (5)		29	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (20)
		12/18/95	ND (5)	ND (5)	ND (5)	ND (20)	ND (10)	ND (5)	ND (5)	ND (5)				

TABLE 13 (Cont.)

GROUNDWATER AND SURFACE WATER ANALYTICAL RESULTS VOLATILE ORGANIC COMPOUNDS

Murphy's Waste Oil Service, Inc. 252 Salem Street Woburn, Massachusetts

Location	Date	Benzene	Toluene	Total Xylenes	Acetone	Chloro- ethane	PCE	1,1-DCA	1,1,1-TCA	TCE	t-1,2-DCE	Vinyl Chloride	2-Butanone
		(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
MW-9	11/7/95	ND (5)	ND (5)	ND (5)	28	ND (10)	ND (5)	9	15	48	5	ND (10)	ND (20)
	12/18/95	ND (5)	ND (5)	ND (5)	ND (20)	ND (10)	ND (5)	5	12	31	ND (5)	ND (10)	ND (20)
MW-10	11/7/95	ND (5)	ND (5)	ND (5)	24	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (20)
	12/18/95	ND (5)	ND (5)	ND (5)	ND (20)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (20)
MW-11 (Blind Dup.)	11 <i>[7]</i> 95 11 <i>[7]</i> 95 12/18/95	ND (5) ND (5) ND (25)	ND (5) ND (5) ND (25)	ND (5) ND (5) ND (25)	ND (20) ND (20) ND (100)	ND (10) ND (10) ND (50)	ND (5) ND (5) ND (25)	13 14 230	16 16 380	ND (5) ND (5) ND (25)	ND (5) ND (5) ND (25)	ND (10) ND (10) ND (50)	ND (20) ND (20) ND (100)
MW-12	11/7/95	ND (5)	ND (5)	ND (5)	ND (20)	ND (10)	ND (5)	10	ND (5)	ND (5)	96	ND (10)	ND (20)
	12/18/95	ND (10)	ND (10)	ND (10)	ND (40)	ND (20)	ND (10)	15	ND (10)	ND (10)	150	ND (20)	ND (40)
MW-13	11 <i>/7/</i> 95	ND (5)	ND (5)	ND (5)	ND (20)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (20)
	12/18/95	ND (5)	ND (5)	ND (5)	ND (20)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (20)
MR-1SS	8/31/93	ND (2)	ND (2)	ND (2)	ND (2)	ND (2)	ND (3.4)	2.6	3.7	1.4	ND (2)	ND (2)	ND (3.4)
	11/9/94	ND (5)	ND (5)	ND (5)	ND (20)	ND (10)	ND (20)	ND (5)	10	ND (5)	ND (5)	ND (10)	ND (20)
	11/7/95	ND (5)	ND (5)	ND (5)	ND (20)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (20)
	12/18/95	ND (5)	ND (5)	ND (5)	ND (20)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (20)
MR-2SS	8/31/93	8.6	12.9	324	ND (10)	ND (10)	ND (17.4)	ND (10)	ND (10)	22.6	461	ND (10)	ND (17.4)
	11/9/94	9	9	9	ND (20)	ND (10)	ND (20)	ND (5)	ND (5)	ND (5)	240	15	ND (20)
	11/7/95	ND (5)	ND (5)	ND (5)	31	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	140	14	ND (20)
	12/18/95	5	ND (5)	ND (5)	ND (20)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	140	12	ND (20)
\$W-A	11/9/95	ND (5)	ND (5)	ND (5)	ND (20)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (20)
SW-B	11/9/95	ND (5)	ND (5)	ND (5)	43	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (20)
SW-3	11/9/94	ND (5)	ND (5)	ND (5)	ND (20)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (20)
Trip Blank	11/9/94	ND (5)	ND (5)	ND (5)	ND (20)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (20)
	11/7/95	ND (5)	ND (5)	ND (5)	ND (20)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (20)
	12/18/95	ND (5)	ND (5)	ND (5)	ND (20)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (20)

٠.__-

TABLE 13 (Cont.)

GROUNDWATER AND SURFACE WATER ANALYTICAL RESULTS **VOLATILE ORGANIC COMPOUNDS**

Murphy's Waste Oil Service, Inc. 252 Salem Street Woburn, Massachusetts

Notes:

- 1. Laboratory analyses by EPA Method 624, data shown in micrograms per liter (ug/l).
- Practical Quantitation Limit shown in parenthese where compounds not detected (ND) or trace (Tr).
 Abbreviations are used for the following compounds:

 1,1-DCA = 1,1-Dichloroethane
 PCE = Tetrachloroethane

PCE = Tetrachloroethene

1,1,1-TCA = 1,1,1-Trichloroethane

TCE = Trichloroethene

t-1,2-DCE = Trans 1,2-Dichloroethene

2022000

TABLE 14 GROUNDWATER AND SURFACE WATER ANALYTICAL RESULTS PCB & POLYNUCLEAR AROMATIC HYDROCARBON COMPOUNDS

Murphy's Waste Oil Service, Inc. 252 Salem Street Woburn, MA

Location	Date	РСВ	Bis(2-ethylhexyl)- phthalate	Naphthalene	Acenaphthylene	Acenaphthene	171	TDS - 41			
		ugil	(ug/l)	(ug/l)	(ug/l)	(ug/l)	Fluorene (ug/l)	Phenanthrene	Anthracene	Fluoranthene	Pyrene
		•	(-0-7	1-97	1-87	(mg/+/	(Hg/I)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
MW-1	11/9/94	ND (1.0)	ND (200)	ND (100)	ND (100)	ND (100)	ND (100)	ND (100)	ND (100)	ND (100)	ND (100)
	11/7/95	ND (1.0)	ND (20)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)		ND (100)
	12/18/95	ND (1.0)	ND (20)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)		ND (10)	ND (10)
					, ,	()	1.0 (10)	110 (10)	ND (10)	ND (10)	ND (10)
MW-2	11/9/94	ND (1.0)	ND (20)	ND (10)	ND (10)	. ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	NID (10)
	11/7/95	ND (1.0)	ND (20)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)		ND (10)
-	12/18/95	ND (1.0)	ND (20)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
			, ,	` ,		1.2 (10)	110 (10)	110 (10)	ND (10)	ND (10)	ND (10)
MW-3	11/9/94	ND (1.0)	ND (200)	ND (100)	ND (100)	ND (100)	ND (100)	ND (100)	ND (100)	ND (100)	ND (100)
	11/7/95	ND (1.0)	ND (20)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)		ND (100)
	12/18/95	ND (1.0)	ND (20)	ND (10)	ND (10)	ND (10)	ND (10)			ND (10)	ND (10)
(Blind Dup.)		ND (1.0)	ND (20)	ND (10)	ND (10)	ND (10)		ND (10)	ND (10)	ND (10)	ND (10)
	,,	(0,	(1.5 (50)	(10)	110 (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
MW-3D	11/7/95	ND (1.0)	ND (20)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	NID (10)	ND an	
	12/18/95	ND (1.0)	ND (20)	ND (10)	ND (10)	ND (10)	ND (10)		ND (10)	ND (10)	ND (10)
			7.0 (0.7)	(,	115 (10)	110 (10)	110 (10)	ND (10)	ND (10)	ND (10)	ND (10)
MW-4	11/9/94	ND (1.0)	ND (20)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	N.B. 440.
	11/7/95	ND (1.0)	ND (20)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)		ND (10)	ND (10)
	12/18/95	ND (1.0)	ND (20)	ND (10)	ND (10)	ND (10)	ND (10)		ND (10)	ND (10)	ND (10)
		(,,,,,	110 (40)	112 (10)	110 (10)	110 (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
MW-5S	11/9/94	ND (1.0)	ND (20)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
	11/7/95	ND (1.0)	ND (20)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
	12/18/95	ND (1.0)	ND (20)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)		ND (10)
				- ,	, , , , , , , , , , , , , , , , , , , ,	, (,,	(,	115 (10)	140 (10)	ND (10)	ND (10)
MW-5D	11/9/94	ND (1.0)	ND (20)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
	11/7/95	ND (1.0)	ND (20)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
	12/18/95	ND (1.0)	ND (20)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)		
		• •	, ,	` '		()	1.5 (10)	115 (10)	1112 (10)	ND (10)	ND (10)
MW-6	11/9/94	ND (1.0)	ND (20)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
	11/7/95	ND (1.0)	ND (20)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)		
	12/18/95	ND (1.0)	ND (20)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
	,,	· (·)	V.= (40)	VIII (VII)	112 (10)	1.5 (.0)	115 (10)	115 (10)	ND (10)	ND (10)	ND (10)
MW-7	12/18/95	ND (1.0)	ND (190)	ND (94)	ND (94)	ND (94)	ND (94)	ND (94)	ND (94)	ND (94)	NID (04)
		(()		V (V-1)	V (v.,	(5.7)	.12 (74)	110 (34)	140 (34)	ND (94)
MW-8	11/7/95	ND (1.0)	ND (20)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
	12/18/95	ND (1.0)	ND (20)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	
			· ()	(,	1.2 (10)	()	(.0)	115 (10)	110 (10)	(עני) טויז	ND (10)
MW-9	11/7/95	ND (1.0)	ND (20)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	NTO CON	NID (40)
	12/18/95	ND (1.0)	ND (20)	ND (10)	ND (10)	ND (10)				ND (10)	ND (10)
			()	(.0)	(10)	(עון) שוו	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
MW-10	11/7/95	ND (1.0)	ND (20)	ND (10)	ND (10)	ND (10)	MT (10)	NID (10)			•
	12/18/95	ND (1.0)	ND (20)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
		(****)	(00)	**** (10)	UP (10)	(ענ) שא	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
											-

TABLE 14 (cont.) GROUNDWATER AND SURFACE WATER ANALYTICAL RESULTS PCB & POLYNUCLEAR AROMATIC HYDROCARBON COMPOUNDS

Murphy's Waste Oil Service, Inc. 252 Salem Street Woburn, MA

Location	Date	РСВ	Bis(2-ethylhexyl)- phthalate	Naphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene
		ug/l	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
MW-11 (Blind Dup.)	11/7/95 11/8/95 12/18/95	ND (1.0) ND (1.0) ND (1.0)	ND (20) ND (20) ND (20)	ND (10) ND (10) ND (10)	ND (10) ND (10) ND (10)	ND (10) ND (10) ND (10)	ND (10) ND (10) ND (10)	ND (10) ND (10) ND (10)	ND (10) ND (10) ND (10)	ND (10) ND (10) ND (10)	ND (10) ND (10) ND (10)
MW-12	11/7/95 12/18/95	ND (1.0) ND (1.0)	ND (20) 23	ND (10) ND (10)							
MW-13	11 <i>/1/</i> 95 12/18/95	1.6 3.8	ND (94) ND (38)	ND (47) ND (19)							
MR-1SS	11/9/94 11/7/95 12/18/95	ND (1.0) ND (1.0) ND (1.0)	ND (200) ND (20) ND (20)	ND (100) ND (10) ND (10)	ND (100) ND (10) ND (10)	ND (100) ND (10) ND (10)	ND (100) ND (10) ND (10)	ND (100) ND (10) ND (10)	ND (100) ND (10) ND (10)	ND (100) ND (10) ND (10)	ND (100) ND (10) ND (10)
MR-2SS	11/9/94 11/7/95 12/18/95	ND (1.0) ND (1.0) ND (1.0)	ND (20) ND (20) ND (38)	ND (10) ND (10) ND (19)	ND (10) ND (10) ND (19)	ND (10) ND (10) ND (19)	ND (10) ND (10) ND (19)	ND (10) ND (10) ND (19)	ND (10) ND (10) ND (19)	ND (10) ND (10) ND (19)	ND (10) ND (10) ND (19)
SW-A	11/9/95	ND (1.0)	ND (20)	ND (10)							
SW-B	11/9/95	ND (1.0)	ND (20)	ND (10)							
SW-3	11/9/94	ND (5.0)	ND (20)	ND (100)							

Notes:

() = number in parentheses is laboratory Practical Quantitation Limit (PQL)
 ND = none detected above PQL
 ug/l = micrograms per liter

TABLE 14 (Cont.) GROUNDWATER AND SURFACE WATER ANALYTICAL RESULTS PCB & POLYNUCLEAR AROMATIC HYDROCARBON COMPOUNDS

Location	Date	Benzo (a) anthracene	Chrysene	Benzo (b) fluoranthene	Benzo (k) Nuoranthene	Benzo (a) pyrene	Indeno (1,2,3-cd) pyrene	Dibenzo (a,h) anthracene	Benzo (g,h,i) perylene
		(ug/l)	(ugil)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
MW-1	11/9/94	ND (100)	ND (100)	ND (100)	ND (100)	ND (100)	ND (100)	ND (100)	ND (100)
	11/7/95	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)		ND (100)
	12/18/95	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)		ND (10)	ND (10)
	,,	112 (10)	112 (10)	110 (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
MW-2	11/9/94	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
	11/7/95	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
	12/18/95	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
MW-3	11/9/94	ND (100)	ND (100)	ND (100)	ND (100)	ND (100)	ND (100)	NT (100)	
	11/7/95	ND (10)	ND (10)	ND (10)	ND (10)			ND (100)	ND (100)
	12/18/95	ND (10)	ND (10)	ND (10)		ND (10)	ND (10)	ND (10)	ND (10)
(DE-4 De-1					ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
(Blind Dup.)	12/18/95	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
MW-3D	11/7/95	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
	12/18/95	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	
	0-4,0-1,0-0	(1	(12)	1,2 (10)	1.0 (10)	112 (10)	ND (10)	ND (10)	ND (10)
MW-4	11/9/94	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
	11 <i>/7/</i> 95	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
	12/18/95	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
MW-5S	11/9/94	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	315 4401
171 TV - DO	11/7/95	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	MD (10)	ND (10)	ND (10)
	12/18/95	ND (10)					ND (10)	ND (10)	ND (10)
	14/10/93	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
MW-5D	11/9/94	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
	11/7/95	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
	12/18/95	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
MW-6	11/9/94	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	NID (10)	ND (10)
141 11 -0	11/7/95	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)		ND (10)	ND (10)
							ND (10)	ND (10)	ND (10)
	12/18/95	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
MW-7	12/18/95	ND (94)	ND (94)	ND (94)	ND (94)	ND (94)	ND (94)	ND (94)	ND (94)
MW-8	11/7/95	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	NTO (10)
	12/18/95	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)			ND (10)
		(,	115 (10)	115 (10)	110 (10)	110 (10)	ND (10)	ND (10)	ND (10)
MW-9	11/7/95	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
	12/18/95	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)

TABLE 14 (Cont.) GROUNDWATER AND SURFACE WATER ANALYTICAL RESULTS PCB & POLYNUCLEAR AROMATIC HYDROCARBON COMPOUNDS

Murphy's Waste Oil Service, Inc. 252 Salem Street Woburn, Massachusetts

Location	Date	Benzo (a) anthracene	Chrysene	Benzo (b) Nuoranthene	Benzo (k) fluoranthene	Benzo (a) pyrene	Indeno (1,2,3-cd) pyrene	Dibenzo (a,h) anthracene	Benzo (g,h,l) perylene
		(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
MW-10	11/7/95	ND (100)	ND (10)	ND (10)	ND (10)	ND (10)	NID (10)	-	
	12/18/95	ND (10)	ND (10)	ND (10)	ND (10)		ND (10)	ND (10)	ND (10)
		1.2 (33)	1.5 (10)	115 (10)	1112 (10)	ND (10)	ND (10)	ND (10)	ND (10)
MW-11	11/7/95	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	5 mm
(Blind Dup.)	11/8/95	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)		ND (10)	ND (10)
` • •	12/18/95	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
	. ,	···- (···)	()	110 (10)	115 (10)	140 (10)	ND (10)	ND (10)	ND (10)
MW-12	11/7/95	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	MD (10)	* (***)
	12/18/95	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
		• •		V (VV)	112 (10)	110 (10)	ND (10)	ND (10)	ND (10)
MW-13	11/7/95	ND (47)	ND (47)	ND (47)	ND (47)	ND (47)	ND (47)	NID (47)	NTD 4470
	12/18/95	ND (19)	ND (19)	ND (19)	ND (19)	ND (19)	ND (17)	ND (47)	ND (47)
			• • •	, ,	(,	1,5 (1)	1112 (13)	ND (19)	ND (19)
MR-1SS	8/31/93	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	NID (10)
	11/9/94	ND (100)	ND (100)	ND (100)	ND (100)	ND (100)	ND (100)	ND (100)	ND (10)
	11 <i>/7/</i> 95	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (100)
	12/18/95	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
			, .	` ,	()	112 (10)	110 (10)	MD (10)	ND (10)
MR-2SS	8/31/93	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
	11/9/94	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	, ,
	11 <i>/7/</i> 95	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
	12/18/95	ND (19)	ND (19)	ND (19)	ND (19)	ND (19)	ND (19)	ND (10) ND (19)	ND (10)
		• •		,,	()	()	142 (17)	110 (13)	ND (19)
SW-A	11/9/95	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
			-	, ,	• •	` ,	(/	110 (10)	110 (10)
SW-B	11/9/95	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
			, ,	, ,	,	. (,	(10)	· · • (10)	MD (10)
SW-3	11/9/94	ND (100)	ND (100)	ND (100)	ND (100)	ND (100)	ND (100)	ND (100)	ND (100)

- () = number in parentheses is laboratory Practical Quantitation Limit (PQL)
 ND = none detected above PQL
 ug/l = micrograms per liter

TABLE 15

GROUNDWATER AND SURFACE WATER ANALYTICAL RESULTS
DISSOLVED INORGANIC ANALYSES

Murphy's Waste Oil Service, Inc. 252 Salem Street Woburn, Massachusetts

Location	Date	Arsenic	Cadmium	Lead	Zinc	Total Cyanic
		(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)
MW-1	11/9/94	ND (0.002)	ND (0.002)	ND (0.002)	ND (0.04)	MD (0.04)
	11/7/95		****	ND (0.002)	•	ND (0.04)
	12/18/95					
	14/10/73		***	ND (0.005)		•••
MW-2	11/9/94	ND (0.002)	ND (0.001)	ND (0.002)	ND (0.04)	ND (0.04)
	11/7/95			ND (0.002)	***	
	12/18/95		***	ND (0.005)	***	
MW-3	11004	0.000	ND (0.001)			
W M-2	11/9/94	0.003	ND (0.001)	0.002	0.04	ND (0.04)
	11/7/95			ND (0.002)	***	
	12/18/95	ND (0.002)	***	ND (0.005)		***
(Blind Dup.)	12/18/95			0.013		
MW-3D	11/7/95	ND (0.002)	ND (0.001)	ND (0.002)	NT) (0.04)	NID (0.02)
	12/18/95	•	• •		ND (0.04)	ND (0.02)
	1.4) 1.0/7.3	•••	***	ND (0.005)	***	***
MW-4	11/9/94	ND (0.002)	ND (0.001)	ND (0.002)	ND (0.04)	ND (0.02)
	11/7/95			ND (0.002)		***
	12/18/95	***	***	ND (0.005)		***
MW-5S	11/9/94	ND (0.002)	ND (0.001)	ND (0.002)	NT (0.04)	NITS (0.00)
101 44 -223		• •	• •		ND (0.04)	ND (0.02)
	11/7/95	•••		ND (0.002)	***	***
	12/18/95	•••		ND (0.005)	***	
MW-5D	11/9/94	0.003	ND (0.001)	ND (0.002)	ND (0.04)	ND (0.02)
•••	11/7/95	-	—	ND (0.002)	***	
	12/18/95	ND (0.002)		ND (0.005)		
	12/10/73	1412 (0.002)	 -	ND (0.003)	***	•-•
MW-6	11/9/94	ND (0.002)	0.002	0.006	ND (0.04)	ND (0.02)
	11/7/95			ND (0.002)	 -	
	12/18/95			ND (0.005)	ND (0.04)	
MW-7	12/18/95	+	Service de la constant de la constan	0.006	•••	bew
MW-8	11 <i>/7/</i> 95	ND (0.002)	ND (0.001)	ND (0.002)	ND (0.04)	ND (0.02)
	12/18/95		112 (0.001)	ND (0.005)	110 (0.04)	-
	. 44 . 64 7.5			11D (0.003)		

DELLACAT

TABLE 15 (cont.)

GROUNDWATER AND SURFACE WATER ANALYTICAL RESULTS DISSOLVED INORGANIC ANALYSES

Murphy's Waste Oil Service, Inc. 252 Salem Street Woburn, Massachusetts

Location	Date	Arsenic	Cadmlum	Lead	Zinc	Total Cyanide
		(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)
MW-9	11/7/95	ND (0.002)	ND (0.001)	ND (0.002)	ND (0.04)	ND (0.02)
	12/18/95			0.006		
MW-10	11/7/95	ND (0.002)	ND (0.001)	ND (0.002)	ND (0.04)	ND (0.02)
	12/18/95		<u></u>	ND (0.001)		
MW-11	11/7/95	ND (0.002)	· ND (0.001)	ND (0.002)	ND (0.04)	ND (0.02)
(Blind Dup.)	11/7/95	0,003	ND (0.001)	ND (0.002)	ND (0.04)	ND (0.02)
	12/18/95	ND (0.002)		ND (0.001)	***	
MW-12	11/7/95	0.004	ND (0.001)	ND (0,02)	1.4	ND (0.02)
	12/18/95	ND (0.002)		ND (0.001)	2.0	
MW-13	11/7/95	0.004	ND (0.001)	0.004	0.56	ND (0.02)
	12/18/95		•••	ND (0.001)	•••	•••
MR-1SS	8/31/93	ND (0.004)	ND (0.005)	ND (0.001)	ND (0.005)	ND (0.002)
	11/9/94	ND (0.002)	ND (0.001)	ND (0.002)	ND (0.04)	ND (0.04)
	11/7/95	•••	***	ND (0.002)		
	12/18/95	P-7	444	ND (0.001)		
MR-2SS	8/31/93	ND (0.002)	ND (0.005)	0.029	0.025	ND (0.023)
	11/9/94	ND (0.002)	ND (0.001)	0.020	ND (0.04)	ND (0.02)
	11 <i>/7/</i> 95	•	* *	0.006		
	12/18/95	***	***	0.009		
SW-A	11/9/95	0.006	ND (0.001)	0.010	0.11	ND (0.02)
SW-B	11/9/95	0.003	ND (0.001)	0.005	ND (0.04)	ND (0.02)
SW-3	11/9/94	ND (0.002)	ND (0.001)	0.028	ND (0.04)	ND (0.04)

Practical Quantitation Limit shown in parentheses where compounds not detected (ND).
 mg/l = Milligrams per liter
 --- = Parameter not analyzed.

WELL MW-8

L = 85.6 cm $T_0 = 3.0 \text{ sec}$ $K = 2.85 \times 10^{-2} \text{ cm/sec}$

NOTES:

- Rising head slug test performed by Clean Harbors on November 17, 1995.
 L is average length of screen through which water passed during the test.
- 3. To is time of recovery to 37 percent of initial change (h/h = 0.37).

CleanHarbo

Environmental Services, Inc. Remedial Technologies Division

> 12 MERCER ROAD NATICK, MASSACHUSETTS 01760 (508) 650-6910

	,					
	ISSUE	DESCRIPTION	DRWN	CHKD	APPR	DATE
	Α	PRELIMINARY				
- 1			i .		1	

MURPHY'S WASTE OIL SERVICE, INC. 252 SALEM STREET WOBURN, MASSACHUSETTS

WELL N	MW-8 SL	UG TEST
--------	---------	---------

PROJECT NO. EN-170 DWG. NO. SCALE: NA

L = 165.2 cm T_0 = 5.0 sec K = 1.16 x 10⁻² cm/sec

NOTES:

- 1. Rising head slug test performed by Clean Harbors on November 17, 1995.
- 2. Lis average length of screen through which water passed during the test.
- 3. T_0 is time of recovery to 37 percent of initial change (h/h $_0$ = 0.37).

CleanHarbors

Environmental Services, Inc. Remedial Technologies Division

12 MERCER ROAD NATICK, MASSACHUSETTS 01760 (508) 650-6910

Α	PRELIMINARY				
ISSUE	DESCRIPTION	DRWN	CHKD	APPR	DATE

MURPHY'S WASTE OIL SERVICE, INC. 252 SALEM STREET WOBURN, MASSACHUSETTS WELL MW-9 SLUG TEST

PROJECT NO. EN-170 DWG. NO.

PROJECT NO. EN-170 DWG. N SCALE: NA

L = 152.4 cm $T_0 = 5.16 \text{ sec}$ $K = 1.18 \times 10^{-2} \text{ cm/sec}$

NOTES:

- 1. Rising head slug test performed by Clean Harbors on November 17, 1995.
- 2. L is average length of screen through which water passed during the test.
- To is time of recovery to 37 percent of initial change (h/h = 0.37).

`leanHarb(

Environmental Services, Inc. Remedial Technologies Division

12 MERCER ROAD NATICK, MASSACHUSETTS 01760 (508) 650-6910

Α	PRELIMINARY				
ISSUE	DESCRIPTION	DRWN	CHKD	APPR	DATE

MURPHY'S WASTE OIL SERVICE, INC. 252 SALEM STREET WOBURN, MASSACHUSETTS WELL MW-10 SLUG TEST

DWG, NO. PROJECT NO. EN-170

SCALE:

NA

WELL MW-11

L = 182.6 cm $T_0 = 2.41 \text{ sec}$ $K = 2.25 \times 10^{-2} \text{ cm/sec}$

NOTES:

- Rising head slug test performed by Clean Harbors on November 17, 1995.
 L is average length of screen through which water passed during the test.
- To is time of recovery to 37 percent of initial change (h/h = 0.37).

CleanHarb

Environmental Services, Inc. Remedial Technologies Division

> 12 MERCER ROAD NATICK, MASSACHUSETTS 01760 (508) 650-6910

Α	PRELIMINARY				
ISSUE	DESCRIPTION	DRWN	CHKD	APPR	DATE

MURPHY'S WASTE OIL SERVICE, INC. 252 SALEM STREET WOBURN, MASSACHUSETTS

WELL MW-11 SLUG TEST

PROJECT NO. EN-170

DWG. NO.

SCALE:

L = 91.4 cm $T_0 = 19.24 \text{ sec}$ $K = 2.64 \times 10^{-3} \text{ cm/sec}$

NOTES:

- 1. Rising head slug test performed by Clean Harbors on November 17, 1995.
- 2. Lis average length of screen through which water passed during the test.
- T_o is time of recovery to 37 percent of initial change (h/h₀= 0.37).

CleanHarbors

Environmental Services, Inc. Remedial Technologies Division

12 MERCER ROAD NATICK, MASSACHUSETTS 01760 (508) 650-6910

Α	PRELIMINARY				
ISSUE	DESCRIPTION	DRWN	CHKD	APPR	DATE

MURPHY'S WASTE OIL SERVICE, INC. 252 SALEM STREET WOBURN, MASSACHUSETTS WELL MW-12 SLUG TEST

PROJECT NO. EN-170 DWG. NO.

PROJECT NO. EN-170 DW SCALE: NA

L = 91.4 cm $T_0 = 25.47 \text{ sec}$ $K = 2.00 \times 10^3 \text{ cm/sec}$

NOTES:

- 1. Rising head slug test performed by Clean Harbors on November 17, 1995.
- 2. L is average length of screen through which water passed during the test.
- 3. T_0 is time of recovery to 37 percent of initial change (h/h $_0$ = 0.37).

CleanHarbo

Environmental Services, Inc. Remedial Technologies Division

12 MERCER ROAD NATICK, MASSACHUSETTS 01760 (508) 650-6910

Α	PRELIMINARY				
ISSUE	DESCRIPTION	DRWN	CHKD	APPR	DATE

MURPHY'S WASTE OIL SERVICE, INC. 252 SALEM STREET WOBURN, MASSACHUSETTS WELL MW-13 SLUG TEST

DWG, NO.

PROJECT NO. EN-170

SCALE: NA

Time (min)	Time (sec)	Elevation (feet)	Change (h)	Head Ratio (h/h ₀)
			0.440	
0.0000	0.00	44.59	0.540	1.0000
0.0166	1.00	44.99	0.140	0.2593
0.0333	2.00	45.08	0.050	0.0926
0.0500	3.00	45.11	0.020	0.0370
0.0666	4.00	45.12	0.010	0.0185
0.0833	5.00	45.13	0.000	0.0000
0.1000	6.00	45.13	0.000	0.0000
0.1166	7.00	45.13	0.000	0.0000
0.1333	8.00	45.13	0.000	0.0000

	•			
Time	Time	Elevation	Change	Head Ratio
(min)	(sec)	(feet)	(h)	(h/h _O)
		·		
0.0000	0.00	42.90	2,340	1.0000
0.0033	0.20	43.29	1.950	0.8333
0.0100	0.60	43.75	1.490	0.6368
0.0267	1.60	43.76	1.480	0.6325
0.0433	2.60	44.01	1.230	0.5256
0.0600	3.60	44.19	1.050	0.4487
0.0767	4.60	44.32	0.920	0.3932
0.0933	5.60	44.45	0.790	0.3376
0.1100	6.60	44.56	0.680	0.2906
0.1267	7.60	44.65	0.590	0.2521
0.1433	8.60	44.73	0.510	0.2179
0.1600	9.60	44.79	0.450	0.1923
0.1767	10.60	44.86	0.380	0.1624
0.1933	11.60	44.91	0.330	0.1410
0.2097	12.58	44.95	0.290	0.1239
0.2267	13.60	44.98	0.260	0.1111
0.2433	14.60	45.01	0.230	0.0983
0.2600	15.60	45.04	0.200	0.0855
0.2767	16.60	45.06	0.180	0.0769
0.2933	17.60	45.08	0.160	0.0684
0.3100	18.60	45.10	0.140	0.0598
0.3934	23.60	45.14	0.100	0.0427
0.4767	28.60	45.17	0.070	0.0299
0.5600	33.60	45.19	0.050	0.0214
0.6434	38.60	45.19	0.050	0.0214
0.7267	43.60	45.20	0.040	0.0171
0.8100	48.60	45.21	0.030	0.0128
0.8934	53.60	45.22	0.020	0.0085
0.9767	58.60	45.22	0.020	0.0085
1.0600	63.60	45.22	0.020	0.0085
1.1434	68.60	45.22	0.020	0.0085
1.2267	73.60	45.23	0.010	0.0043
1.3067	78.40	45.24	0.000	0.0000
1.3933	83.60	45.24	0.000	0.0000
1.4767	88.60	45.24	0.000	0.0000

Time (min)	Time (sec)	Elevation (feet)	Change (h)	Head Ratio (h/ho)
0.0000	0.00	43.93	1.440	1.0000
0.0033	0.20	44.10	1.270	0.8819
0.0200	1.20	44.42	0.950	0.6597
0.0533	3.20	44.40	0.970	0.6736
0.0700	4.20	44.66	0.710	0.4931
0.0866	5.20	44.84	0.530	0.3681
0.1033	6.20	44.97	0.400	0.2778
0.1200	7.20	45.07	0.300	0.2083
0.1366	8.20	45.14	0.230	0.1597
0.1533	9.20	45.20	0.170	0.1181
0.1700	10.20	45.23	0.140	0.0972
0.1866	11.20	45.29	0.080	0.0556
0.2033	12.20	45.30	0.070	0.0486
0.2200	13.20	45.32	0.050	0.0347
0.2366	14.20	45,34	0.030	0.0208
0.2533	15.20	45.34	0.030	0.0208
0.2700	16.20	45.35	0.020	0.0139
0.2866	17.20	45.35	0.020	0.0139
0.3033	18.20	45.37	0.000	0.0000

Time (min)	Time (sec)	Elevation (feet)	Change (h)	Head Ratio
		11000		<u> </u>
0.0000	0.00	42.24	1.790	1.0000
0.0083	0.50	42.50	1.530	0.8547
0.0085	1.00	42.92	1.110	0.6201
0.0250	1.50	43.10	0.930	0.5196
0.0230		43.16		0.4302
	2.00		0.770	
0.0416	2.50	43.39	0.640	0.3575
0.0500	3.00	43.49	0.540	0.3017
0.0583	3.50	43.56	0.470	0.2626
0.0666	4.00	43.63	0.400	0.2235
0.0750	4.50	43.68	0.350	0.1955
0.0833	5.00	43.72	0.310	0.1732
0.0916	5.50	43.76	0.270	0.1508
0.1000	6.00	43.78	0.250	0.1397
0.1083	6.50	43.80	0.230	0.1285
0.1166	7.00	43.82	0.210	0.1173
0.1250	7.50	43.83	0.200	0.1117
0.1333	8.00	43.85	0.180	0.1006
0.1416	8.50	43.86	0.170	0.0950
0.1500	9.00	43.87	0.160	0.0894
0.1583	9.50	43.88	0.150	0.0838
0.1666	10.00	43.88	0.150	0.0838
0.1750	10.50	43.89	0.140	0.0782
0.1833	11.00	43.89	0.140	0.0782
0.1916	11.50	43.90	0.130	0.0726
0.2000	12.00	43.91	0.120	0.0670
0.2083	12.50	43.91	0.120	0.0670
0.2166	13.00	43.91	0.120	0.0670
0.2250	13.50	43.92	0.110	0.0615
0.2333	14.00	43.92	0.110	0.0615
0.2416	14.50	43.93	0.100	0.0559
0.2500	15.00	43.93	0.100	0.0559
0.2583	15.50	43.93	0.100	0.0559
0.2666	16.00	43.93	0.100	0.0559
0.2750	16.50	43.93	0.100	0.0559
0.2833	17.00	43.94	0.090	0.0503
0.2916	17.50	43.95	0.080	0.0447
0.3000	18.00	43.95	0.080	0.0447
0.3083	18.50	43.95	0.080	0.0447
0.3250	19.50	43.95	0.080	0.0447
0.3416	20.50	43.95	0.080	0.0447
0.3583	21.50	43.96	0.070	0.0391
0.3750	22.50	43.96	0.070	0.0391
0.3916	23.50	43.96	0.070	0.0391
0.4083	24.50	43.97	0.060	0.0335
0.4250	25.50	43.96	0.070	0.0391
0.4416	26.50	43.98	0.050	0.0279

SLUG TEST DATA - WELL MW-11 (continued)

Time	Time	Elevation	Change	Head Ratio
(min)	(sec)	(feet)	(h)	(h/h _O)
7111111	13001	TICCO	(111	(11/11())
0.4583	27.50	43.98	0.050	0.0279
0.4750	28.50	43.97	0.060	0.0335
0.4916	29.50	43.98	0.050	0.0279
0.5083	30.50	43.98	0.050	0.0279
0.5250	31.50	43.98	0.050	0.0279
0.5416	32.50	43.99	0.040	0.0273
0.5583	33.50	43.99	0.040	0.0223
0.5750	34.50	43.99	0.040	0.0223
0.5736	35.50	43.99	0.040	0.0223
0.6083	36.50	44.00	0.030	0.0168
0.6250	37.50	44.00	0.030	0.0168
0.6416	37.50 38.50	44.00	0.030	0.0168
0.6583	39.50	44.00	0.030	0.0168
0.6750				
0.6916	40.50 41.50	44.00	0.030	0.0168
0.7080	41.50 42.48	44.00	0.030 0.030	0.0168 0.0168
0.7250		44.00		
	43.50	44.00	0.030	0.0168
0.7416 0.7583	44.50 45.50	44.01	0.020	0.0112 0.0112
0.7383		44.01	0.020	
	46.50	44.01	0.020	0.0112
0.7916	47.50	44.01	0.020	0.0112
0.8083	48.50	44.01	0.020	0.0112
0.8250	49.50	44.01	0.020	0.0112
0.8416	50.50	44.01	0.020	0.0112
0.8583	51.50	44.01	0.020	0.0112
0.8750	52.50 53.50	44.01	0.020	0.0112
0.8916	53.50	44.02	0.010	0.0056
0.9083	54.50	44.02	0.010	0.0056
0.9250	55.50	44.02	0.010	0.0056
0.9416	56.50	44.02	0.010	0.0056
0.9583	57.50	44.02	0.010	0.0056
0.9750	58.50	44.02	0.010	0.0056
1.1750	70.50	44.02	0.010	0.0056
1.3750	82.50	44.02	0.010	0.0056
1.5750	94.50	44.02	0.010	0.0056
1.7750	106.5	44.02	0.010	0.0056
1.9750	118.5	44.03	0.000	0.0000

Time (min)	Time (sec)	Elevation (feet)	Change (h)	Head Ratio (h/h _o)
3,7,000	10007	1,10017		1.4.1.01
0.0000	0.00	47.50	3.150	1.0000
0.0083	0.50	47.49	3.140	0.9968
0.0166	1.00	47.48	3.130	0.9936
0.0250	1.50	47.43	3.080	0.9778
0.0333	2.00	47.33	2.980	0.9460
0.0416	2.50	47.23	2.880	0.9143
0.0500	3.00	47.14	2.790	0.8857
0.0583	3.50	47.05	2.700	0.8571
0.0666	4.00	46.97	2.620	0.8317
0.0750	4.50	46.89	2.540	0.8063
0.0833	5.00	46.81	2.460	0.7810
0.0916	5.50	46.74	2.390	0.7587
0.1000	6.00	46.67	2.320	0.7365
0.1083	6.50	46.61	2.260	0.7175
0.1166	7.00	46.54	2.190	0.6952
0.1250	7.50	46.48	2.130	0.6762
0.1333	8.00	46.42	2.070	0.6571
0.1416	8.50	46.36	2.010	0.6381
0.1500	9.00	46,30	1.950	0.6190
0.1583	9.50	46.25	1.900	0.6032
0.1666	10.00	46.20	1.850	0.5873
0.1750	10.50	46.25	1.900	0.6032
0.1833	11.00	46.11	1.760	0.5587
0.1916	11.50	46.06	1.710	0.5429
0.2000	12.00	46.01	1.660	0.5270
0.2083	12.50	45.97	1.620	0.5143
0.2166	13.00	45.93	1.580	0.5016
0.2250	13.50	45.89	1.540	0.4889
0.2333	14.00	45.85	1.500	0.4762
0.2416	14.50	45.81	1.460	0.4635
0.2500	15.00	45.78	1.430	0.4540
0.2583	15.50	45.74	1.390	0.4413
0.2666	16.00	45.71	1.360	0.4317
0.2750	16.50	45.68	1.330	0.4222
0.2833	17.00	45.65	1.300	0.4127
0.2916	17.50	45.62	1.270	0.4032
0.3000	18.00	45.59	1.240	0.3936
0.3083	18.50	45.56	1.210	0.3841
0.3166	19.00	45.53	1.180	0.3746
0.3250	19.50	45.50	1.150	0.3651
0.3333	20.00	45.48	1.130	0.3587
0.3500	21.00	45.43	1.080	0.3429
0.3666	22.00	45.38	1.030	0.3270
0.3833	23.00	45.34	0.990	0.3143
0.4000	24.00	45.30	0.950	0.3016
0.4166	25.00	45.26	0.910	0.2889

SLUG TEST DATA - WELL MW-12 (continued)

0.4333	Time (min)	Time (sec)	Elevation (feet)	Change (h)	Head Ratio (h/h ₀)
0.4500 27.00 45.19 0.840 0.2667 0.4666 28.00 45.16 0.810 0.2571 0.4833 29.00 45.13 0.780 0.2476 0.5000 30.00 45.10 0.750 0.2381 0.5166 31.00 45.07 0.720 0.2286 0.5333 32.00 45.05 0.700 0.2222 0.5500 33.00 45.02 0.670 0.2127 0.5666 34.00 45.00 0.650 0.2063 0.5833 35.00 44.98 0.630 0.2000 0.6000 36.00 44.95 0.600 0.1905 0.6166 37.00 44.93 0.580 0.1841 0.6333 38.00 44.91 0.560 0.1714 0.6666 40.00 44.88 0.530 0.1683 0.6833 41.00 44.86 0.510 0.1619 0.7000 42.00 44.84 0.490 0.1556					
0.4666 28.00 45.16 0.810 0.2571 0.4833 29.00 45.13 0.780 0.2476 0.5000 30.00 45.10 0.750 0.2381 0.5166 31.00 45.07 0.720 0.2286 0.5333 32.00 45.05 0.700 0.22127 0.5666 34.00 45.02 0.670 0.2127 0.5666 34.00 45.00 0.650 0.2063 0.5833 35.00 44.98 0.630 0.2000 0.6000 36.00 44.93 0.580 0.1841 0.6333 38.00 44.91 0.560 0.1778 0.6500 39.00 44.89 0.540 0.1714 0.6666 40.00 44.88 0.530 0.1843 0.6833 41.00 44.88 0.530 0.1683 0.6866 40.00 44.84 0.490 0.1556 0.7166 43.00 44.83 0.480 0.1524	0.4333	26.00		0.870	
0.4833 29.00 45.13 0.780 0.2476 0.5000 30.00 45.10 0.750 0.2381 0.5166 31.00 45.07 0.720 0.2286 0.5333 32.00 45.05 0.700 0.2222 0.5500 33.00 45.02 0.670 0.2127 0.5666 34.00 45.00 0.650 0.2063 0.5833 35.00 44.98 0.630 0.2000 0.6000 36.00 44.95 0.600 0.1905 0.6166 37.00 44.93 0.580 0.1841 0.6333 38.00 44.91 0.560 0.1778 0.6500 39.00 44.89 0.540 0.1714 0.6666 40.00 44.88 0.530 0.1683 0.6833 41.00 44.84 0.450 0.1556 0.7166 43.00 44.83 0.480 0.1524 0.7333 44.00 44.83 0.480 0.1429	0.4500	27.00	45.19	0.840	
0.5000 30.00 45.10 0.750 0.2381 0.5166 31.00 45.07 0.720 0.2286 0.5333 32.00 45.05 0.700 0.2222 0.5500 33.00 45.02 0.670 0.2127 0.5666 34.00 45.00 0.650 0.2063 0.5833 35.00 44.98 0.630 0.2000 0.6000 36.00 44.95 0.600 0.1905 0.6166 37.00 44.93 0.580 0.1841 0.6333 38.00 44.91 0.560 0.1778 0.6500 39.00 44.89 0.540 0.1714 0.6666 40.00 44.88 0.530 0.1683 0.6833 41.00 44.86 0.510 0.1619 0.7000 42.00 44.84 0.490 0.1556 0.7166 43.00 44.83 0.480 0.1524 0.7500 45.00 44.80 0.450 0.1429	0.4666	28.00	45.16	0.810	0.2571
0.5166 31.00 45.07 0.720 0.2286 0.5333 32.00 45.05 0.700 0.2222 0.5500 33.00 45.02 0.670 0.2127 0.5666 34.00 45.00 0.650 0.2063 0.5833 35.00 44.98 0.630 0.2000 0.6000 36.00 44.95 0.600 0.1905 0.6166 37.00 44.93 0.580 0.1841 0.6333 38.00 44.91 0.560 0.1778 0.6500 39.00 44.88 0.530 0.1683 0.6833 41.00 44.88 0.530 0.1683 0.6833 41.00 44.84 0.490 0.1556 0.7166 43.00 44.83 0.480 0.1524 0.7333 44.00 44.83 0.480 0.1524 0.7500 45.00 44.80 0.450 0.1429 0.7666 46.00 44.79 0.440 0.1397			45.13	0.780	
0.5333 32.00 45.05 0.700 0.2222 0.5500 33.00 45.02 0.670 0.2127 0.5666 34.00 45.00 0.650 0.2063 0.5833 35.00 44.98 0.630 0.2000 0.6000 36.00 44.95 0.600 0.1905 0.6166 37.00 44.93 0.580 0.1841 0.6333 38.00 44.91 0.560 0.1778 0.6500 39.00 44.89 0.540 0.1714 0.6666 40.00 44.88 0.530 0.1683 0.6833 41.00 44.86 0.510 0.1619 0.7000 42.00 44.84 0.490 0.1556 0.7166 43.00 44.83 0.480 0.1524 0.7333 44.00 44.82 0.470 0.1492 0.7500 45.00 44.79 0.440 0.1397 0.7833 47.00 44.79 0.440 0.1333					
0.5500 33.00 45.02 0.670 0.2127 0.5666 34.00 45.00 0.650 0.2063 0.5833 35.00 44.98 0.630 0.2000 0.6000 36.00 44.95 0.600 0.1905 0.6166 37.00 44.91 0.560 0.1778 0.6500 39.00 44.89 0.540 0.1714 0.6566 40.00 44.89 0.540 0.1714 0.6666 40.00 44.88 0.530 0.1683 0.6833 41.00 44.86 0.510 0.1619 0.7000 42.00 44.84 0.490 0.1556 0.7166 43.00 44.83 0.480 0.1524 0.7333 44.00 44.83 0.480 0.1524 0.7500 45.00 44.80 0.450 0.1429 0.7666 46.00 44.79 0.440 0.1397 0.7833 47.00 44.78 0.440 0.1397				0.720	
0.5666 34.00 45.00 0.650 0.2063 0.5833 35.00 44.98 0.630 0.2000 0.6000 36.00 44.95 0.600 0.1905 0.6166 37.00 44.93 0.580 0.1841 0.6333 38.00 44.91 0.560 0.1778 0.6500 39.00 44.89 0.540 0.1714 0.6666 40.00 44.88 0.530 0.1683 0.6833 41.00 44.86 0.510 0.1619 0.7000 42.00 44.84 0.490 0.1556 0.7166 43.00 44.83 0.480 0.1524 0.7333 44.00 44.82 0.470 0.1492 0.7500 45.00 44.80 0.450 0.1429 0.7666 46.00 44.79 0.440 0.1397 0.7833 47.00 44.78 0.430 0.1365 0.8000 48.00 44.77 0.420 0.1333					
0.5833 35.00 44.98 0.630 0.2000 0.6000 36.00 44.95 0.600 0.1905 0.6166 37.00 44.93 0.580 0.1841 0.6333 38.00 44.91 0.560 0.1714 0.6500 39.00 44.89 0.540 0.1714 0.6666 40.00 44.88 0.530 0.1683 0.6833 41.00 44.86 0.510 0.1619 0.7000 42.00 44.84 0.490 0.1556 0.7166 43.00 44.83 0.480 0.1524 0.7333 44.00 44.82 0.470 0.1492 0.7500 45.00 44.80 0.450 0.1429 0.7666 46.00 44.79 0.440 0.1397 0.7833 47.00 44.78 0.430 0.1365 0.8000 48.00 44.77 0.420 0.1333 0.8166 49.00 44.75 0.400 0.1270					
0.6000 36.00 44.95 0.600 0.1905 0.6166 37.00 44.93 0.580 0.1841 0.6333 38.00 44.91 0.560 0.1778 0.6500 39.00 44.89 0.540 0.1714 0.6666 40.00 44.88 0.530 0.1683 0.6833 41.00 44.86 0.510 0.1619 0.7000 42.00 44.84 0.490 0.1556 0.7166 43.00 44.83 0.480 0.1524 0.7333 44.00 44.82 0.470 0.1492 0.7500 45.00 44.80 0.450 0.1429 0.7666 46.00 44.79 0.440 0.1397 0.7833 47.00 44.78 0.430 0.1365 0.8000 48.00 44.77 0.420 0.1333 0.8166 49.00 44.75 0.400 0.1270 0.8333 50.00 44.73 0.380 0.1266					
0.6166 37.00 44.93 0.580 0.1841 0.6333 38.00 44.91 0.560 0.1778 0.6500 39.00 44.89 0.540 0.1714 0.6666 40.00 44.88 0.530 0.1683 0.6833 41.00 44.86 0.510 0.1619 0.7000 42.00 44.84 0.490 0.1556 0.7166 43.00 44.83 0.480 0.1524 0.7333 44.00 44.82 0.470 0.1492 0.7500 45.00 44.80 0.450 0.1429 0.7666 46.00 44.79 0.440 0.1397 0.7833 47.00 44.78 0.430 0.1365 0.8000 48.00 44.77 0.420 0.1333 0.8166 49.00 44.75 0.400 0.1270 0.8333 50.00 44.74 0.390 0.1238 0.8500 51.00 44.73 0.380 0.1175					
0.6333 38.00 44.91 0.560 0.1778 0.6500 39.00 44.89 0.540 0.1714 0.6666 40.00 44.88 0.530 0.1683 0.6833 41.00 44.86 0.510 0.1619 0.7000 42.00 44.84 0.490 0.1556 0.7166 43.00 44.83 0.480 0.1524 0.7333 44.00 44.82 0.470 0.1492 0.7500 45.00 44.80 0.450 0.1429 0.7666 46.00 44.79 0.440 0.1397 0.7833 47.00 44.78 0.430 0.1365 0.8000 48.00 44.77 0.420 0.1333 0.8166 49.00 44.75 0.400 0.1270 0.8333 50.00 44.74 0.390 0.1238 0.8500 51.00 44.73 0.380 0.1106 0.8833 53.00 44.71 0.360 0.1143					
0.6500 39.00 44.89 0.540 0.1714 0.6666 40.00 44.88 0.530 0.1683 0.6833 41.00 44.86 0.510 0.1619 0.7000 42.00 44.84 0.490 0.1556 0.7166 43.00 44.83 0.480 0.1524 0.7333 44.00 44.82 0.470 0.1492 0.7500 45.00 44.80 0.450 0.1429 0.7666 46.00 44.79 0.440 0.1397 0.7833 47.00 44.78 0.430 0.1365 0.8000 48.00 44.77 0.420 0.1337 0.8166 49.00 44.75 0.400 0.1270 0.8333 50.00 44.74 0.390 0.1238 0.8500 51.00 44.73 0.380 0.1206 0.8666 52.00 44.71 0.360 0.1143 0.9000 54.00 44.70 0.350 0.1111					
0.6666 40.00 44.88 0.530 0.1683 0.6833 41.00 44.86 0.510 0.1619 0.7000 42.00 44.84 0.490 0.1556 0.7166 43.00 44.83 0.480 0.1524 0.7333 44.00 44.82 0.470 0.1492 0.7500 45.00 44.80 0.450 0.1429 0.7666 46.00 44.79 0.440 0.1397 0.7833 47.00 44.78 0.430 0.1365 0.8000 48.00 44.77 0.420 0.1333 0.8166 49.00 44.75 0.400 0.1270 0.8333 50.00 44.74 0.390 0.1238 0.8500 51.00 44.73 0.380 0.1206 0.8666 52.00 44.71 0.360 0.1175 0.8833 53.00 44.71 0.360 0.1143 0.9900 54.00 44.70 0.350 0.1111					
0.6833 41.00 44.86 0.510 0.1619 0.7000 42.00 44.84 0.490 0.1556 0.7166 43.00 44.83 0.480 0.1524 0.7333 44.00 44.82 0.470 0.1492 0.7500 45.00 44.80 0.450 0.1429 0.7666 46.00 44.79 0.440 0.1397 0.7833 47.00 44.78 0.430 0.1365 0.8000 48.00 44.77 0.420 0.1333 0.8166 49.00 44.75 0.400 0.1270 0.8333 50.00 44.74 0.390 0.1238 0.8500 51.00 44.73 0.380 0.1206 0.8666 52.00 44.72 0.370 0.1175 0.8833 53.00 44.71 0.360 0.1143 0.9900 54.00 44.70 0.350 0.1111 0.9166 55.00 44.69 0.340 0.1079					
0.7000 42.00 44.84 0.490 0.1556 0.7166 43.00 44.83 0.480 0.1524 0.7333 44.00 44.82 0.470 0.1492 0.7500 45.00 44.80 0.450 0.1429 0.7666 46.00 44.79 0.440 0.1397 0.7833 47.00 44.78 0.430 0.1365 0.8000 48.00 44.77 0.420 0.1333 0.8166 49.00 44.75 0.400 0.1270 0.8333 50.00 44.74 0.390 0.1238 0.8500 51.00 44.73 0.380 0.1206 0.8666 52.00 44.72 0.370 0.1175 0.8833 53.00 44.71 0.360 0.1143 0.9000 54.00 44.70 0.350 0.1111 0.9166 55.00 44.70 0.350 0.1111 0.9333 56.00 44.69 0.340 0.1079					
0.7166 43.00 44.83 0.480 0.1524 0.7333 44.00 44.82 0.470 0.1492 0.7500 45.00 44.80 0.450 0.1429 0.7666 46.00 44.79 0.440 0.1397 0.7833 47.00 44.78 0.430 0.1365 0.8000 48.00 44.77 0.420 0.1333 0.8166 49.00 44.75 0.400 0.1270 0.8333 50.00 44.74 0.390 0.1238 0.8500 51.00 44.73 0.380 0.1206 0.8666 52.00 44.72 0.370 0.1175 0.8833 53.00 44.71 0.360 0.1143 0.9000 54.00 44.70 0.350 0.1111 0.9166 55.00 44.70 0.350 0.1111 0.9233 56.00 44.69 0.340 0.1079 0.9500 57.00 44.68 0.330 0.1048 0.9666 58.00 44.67 0.320 0.1016 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
0.7333 44.00 44.82 0.470 0.1492 0.7500 45.00 44.80 0.450 0.1429 0.7666 46.00 44.79 0.440 0.1397 0.7833 47.00 44.78 0.430 0.1365 0.8000 48.00 44.77 0.420 0.1333 0.8166 49.00 44.75 0.400 0.1270 0.8333 50.00 44.74 0.390 0.1238 0.8500 51.00 44.73 0.380 0.1206 0.8666 52.00 44.72 0.370 0.1175 0.8833 53.00 44.71 0.360 0.1143 0.9000 54.00 44.70 0.350 0.1111 0.9166 55.00 44.70 0.350 0.1111 0.9333 56.00 44.69 0.340 0.1079 0.9500 57.00 44.68 0.330 0.1048 0.9666 58.00 44.67 0.320 0.1016					
0.7500 45.00 44.80 0.450 0.1429 0.7666 46.00 44.79 0.440 0.1397 0.7833 47.00 44.78 0.430 0.1365 0.8000 48.00 44.77 0.420 0.1333 0.8166 49.00 44.75 0.400 0.1270 0.8333 50.00 44.74 0.390 0.1238 0.8500 51.00 44.73 0.380 0.1206 0.8666 52.00 44.72 0.370 0.1175 0.8833 53.00 44.71 0.360 0.1143 0.9000 54.00 44.70 0.350 0.1111 0.9166 55.00 44.70 0.350 0.1111 0.9333 56.00 44.69 0.340 0.1079 0.9500 57.00 44.68 0.330 0.1048 0.9666 58.00 44.67 0.320 0.1016 1.0000 60.00 44.58 0.230 0.0730					
0.7666 46.00 44.79 0.440 0.1397 0.7833 47.00 44.78 0.430 0.1365 0.8000 48.00 44.77 0.420 0.1333 0.8166 49.00 44.75 0.400 0.1270 0.8333 50.00 44.74 0.390 0.1238 0.8500 51.00 44.73 0.380 0.1206 0.8666 52.00 44.72 0.370 0.1175 0.8833 53.00 44.71 0.360 0.1143 0.9000 54.00 44.70 0.350 0.1111 0.9166 55.00 44.70 0.350 0.1111 0.9333 56.00 44.69 0.340 0.1079 0.9500 57.00 44.68 0.330 0.1048 0.9666 58.00 44.67 0.320 0.1016 1.0000 60.00 44.66 0.310 0.0984 1.2000 72.00 44.58 0.230 0.0730					
0.7833 47.00 44.78 0.430 0.1365 0.8000 48.00 44.77 0.420 0.1333 0.8166 49.00 44.75 0.400 0.1270 0.8333 50.00 44.74 0.390 0.1238 0.8500 51.00 44.73 0.380 0.1206 0.8666 52.00 44.72 0.370 0.1175 0.8833 53.00 44.71 0.360 0.1143 0.9000 54.00 44.70 0.350 0.1111 0.9166 55.00 44.70 0.350 0.1111 0.9333 56.00 44.69 0.340 0.1079 0.9500 57.00 44.68 0.330 0.1048 0.9666 58.00 44.67 0.320 0.1016 1.0000 60.00 44.66 0.310 0.0984 1.2000 72.00 44.58 0.230 0.0730 1.4000 84.00 44.54 0.190 0.0603 1.8000 108.00 44.48 0.130 0.0413 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
0.8000 48.00 44.77 0.420 0.1333 0.8166 49.00 44.75 0.400 0.1270 0.8333 50.00 44.74 0.390 0.1238 0.8500 51.00 44.73 0.380 0.1206 0.8666 52.00 44.72 0.370 0.1175 0.8833 53.00 44.71 0.360 0.1143 0.9000 54.00 44.70 0.350 0.1111 0.9166 55.00 44.70 0.350 0.1111 0.9333 56.00 44.69 0.340 0.1079 0.9500 57.00 44.68 0.330 0.1048 0.9666 58.00 44.67 0.320 0.1016 0.9833 59.00 44.67 0.320 0.1016 1.0000 60.00 44.58 0.230 0.0730 1.4000 84.00 44.54 0.190 0.0603 1.8000 108.00 44.48 0.130 0.0413 2.0000 120.00 44.44 0.090 0.0286 <					
0.8166 49.00 44.75 0.400 0.1270 0.8333 50.00 44.74 0.390 0.1238 0.8500 51.00 44.73 0.380 0.1206 0.8666 52.00 44.72 0.370 0.1175 0.8833 53.00 44.71 0.360 0.1143 0.9000 54.00 44.70 0.350 0.1111 0.9166 55.00 44.70 0.350 0.1111 0.9333 56.00 44.69 0.340 0.1079 0.9500 57.00 44.68 0.330 0.1048 0.9666 58.00 44.67 0.320 0.1016 0.9833 59.00 44.67 0.320 0.1016 1.0000 60.00 44.66 0.310 0.0984 1.2000 72.00 44.58 0.230 0.0730 1.4000 84.00 44.54 0.190 0.0603 1.8000 108.00 44.48 0.130 0.0413 2.0000 132.00 44.45 0.100 0.0317 <					
0.8333 50.00 44.74 0.390 0.1238 0.8500 51.00 44.73 0.380 0.1206 0.8666 52.00 44.72 0.370 0.1175 0.8833 53.00 44.71 0.360 0.1143 0.9000 54.00 44.70 0.350 0.1111 0.9166 55.00 44.70 0.350 0.1111 0.9333 56.00 44.69 0.340 0.1079 0.9500 57.00 44.68 0.330 0.1048 0.9666 58.00 44.67 0.320 0.1016 0.9833 59.00 44.67 0.320 0.1016 1.0000 60.00 44.66 0.310 0.0984 1.2000 72.00 44.58 0.230 0.0730 1.4000 84.00 44.54 0.190 0.0603 1.8000 108.00 44.48 0.130 0.0413 2.0000 132.00 44.45 0.100 0.0317 2.4000 144.00 44.44 0.090 0.0226					
0.8500 51.00 44.73 0.380 0.1206 0.8666 52.00 44.72 0.370 0.1175 0.8833 53.00 44.71 0.360 0.1143 0.9000 54.00 44.70 0.350 0.1111 0.9166 55.00 44.70 0.350 0.1111 0.9333 56.00 44.69 0.340 0.1079 0.9500 57.00 44.68 0.330 0.1048 0.9666 58.00 44.67 0.320 0.1016 0.9833 59.00 44.67 0.320 0.1016 1.0000 60.00 44.66 0.310 0.0984 1.2000 72.00 44.58 0.230 0.0730 1.4000 84.00 44.54 0.190 0.0603 1.8000 108.00 44.48 0.130 0.0413 2.0000 132.00 44.45 0.100 0.0317 2.4000 144.00 44.44 0.090 0.0226 2.6000 156.00 44.42 0.070 0.0222					
0.8666 52.00 44.72 0.370 0.1175 0.8833 53.00 44.71 0.360 0.1143 0.9000 54.00 44.70 0.350 0.1111 0.9166 55.00 44.70 0.350 0.1111 0.9333 56.00 44.69 0.340 0.1079 0.9500 57.00 44.68 0.330 0.1048 0.9666 58.00 44.67 0.320 0.1016 0.9833 59.00 44.67 0.320 0.1016 1.0000 60.00 44.66 0.310 0.0984 1.2000 72.00 44.58 0.230 0.0730 1.4000 84.00 44.54 0.190 0.0603 1.8000 108.00 44.48 0.130 0.0413 2.0000 120.00 44.46 0.110 0.0349 2.2000 132.00 44.45 0.100 0.0317 2.4000 144.00 44.44 0.090 0.0286 2.6000 156.00 44.42 0.070 0.0222					
0.8833 53.00 44.71 0.360 0.1143 0.9000 54.00 44.70 0.350 0.1111 0.9166 55.00 44.70 0.350 0.1111 0.9333 56.00 44.69 0.340 0.1079 0.9500 57.00 44.68 0.330 0.1048 0.9666 58.00 44.67 0.320 0.1016 0.9833 59.00 44.67 0.320 0.1016 1.0000 60.00 44.66 0.310 0.0984 1.2000 72.00 44.58 0.230 0.0730 1.4000 84.00 44.54 0.190 0.0603 1.8000 108.00 44.48 0.130 0.0413 2.0000 120.00 44.46 0.110 0.0349 2.2000 132.00 44.45 0.100 0.0317 2.4000 144.00 44.44 0.090 0.0226 2.8000 168.00 44.42 0.070 0.0222					
0.9000 54.00 44.70 0.350 0.1111 0.9166 55.00 44.70 0.350 0.1111 0.9333 56.00 44.69 0.340 0.1079 0.9500 57.00 44.68 0.330 0.1048 0.9666 58.00 44.67 0.320 0.1016 0.9833 59.00 44.67 0.320 0.1016 1.0000 60.00 44.66 0.310 0.0984 1.2000 72.00 44.58 0.230 0.0730 1.4000 84.00 44.54 0.190 0.0603 1.6000 96.00 44.51 0.160 0.0508 1.8000 108.00 44.48 0.130 0.0413 2.0000 120.00 44.46 0.110 0.0349 2.2000 132.00 44.45 0.100 0.0317 2.4000 144.00 44.44 0.090 0.0226 2.6000 156.00 44.42 0.070 0.0222 2.8000 168.00 44.42 0.070 0.0222 <					
0.9166 55.00 44.70 0.350 0.1111 0.9333 56.00 44.69 0.340 0.1079 0.9500 57.00 44.68 0.330 0.1048 0.9666 58.00 44.67 0.320 0.1016 0.9833 59.00 44.67 0.320 0.1016 1.0000 60.00 44.66 0.310 0.0984 1.2000 72.00 44.58 0.230 0.0730 1.4000 84.00 44.54 0.190 0.0603 1.6000 96.00 44.51 0.160 0.0508 1.8000 108.00 44.48 0.130 0.0413 2.0000 120.00 44.46 0.110 0.0349 2.2000 132.00 44.45 0.100 0.0317 2.4000 144.00 44.44 0.090 0.0286 2.6000 156.00 44.42 0.070 0.0222 2.8000 168.00 44.42 0.070 0.0222					
0.9333 56.00 44.69 0.340 0.1079 0.9500 57.00 44.68 0.330 0.1048 0.9666 58.00 44.67 0.320 0.1016 0.9833 59.00 44.67 0.320 0.1016 1.0000 60.00 44.66 0.310 0.0984 1.2000 72.00 44.58 0.230 0.0730 1.4000 84.00 44.54 0.190 0.0603 1.6000 96.00 44.51 0.160 0.0508 1.8000 108.00 44.48 0.130 0.0413 2.0000 120.00 44.44 0.100 0.0349 2.2000 132.00 44.45 0.100 0.0317 2.4000 144.00 44.44 0.090 0.0286 2.6000 156.00 44.42 0.070 0.0222 2.8000 168.00 44.42 0.070 0.0222					
0.9500 57.00 44.68 0.330 0.1048 0.9666 58.00 44.67 0.320 0.1016 0.9833 59.00 44.67 0.320 0.1016 1.0000 60.00 44.66 0.310 0.0984 1.2000 72.00 44.58 0.230 0.0730 1.4000 84.00 44.54 0.190 0.0603 1.6000 96.00 44.51 0.160 0.0508 1.8000 108.00 44.48 0.130 0.0413 2.0000 120.00 44.46 0.110 0.0349 2.2000 132.00 44.45 0.100 0.0317 2.4000 144.00 44.44 0.090 0.0286 2.6000 156.00 44.42 0.070 0.0222 2.8000 168.00 44.42 0.070 0.0222					
0.9666 58.00 44.67 0.320 0.1016 0.9833 59.00 44.67 0.320 0.1016 1.0000 60.00 44.66 0.310 0.0984 1.2000 72.00 44.58 0.230 0.0730 1.4000 84.00 44.54 0.190 0.0603 1.6000 96.00 44.51 0.160 0.0508 1.8000 108.00 44.48 0.130 0.0413 2.0000 120.00 44.46 0.110 0.0349 2.2000 132.00 44.45 0.100 0.0317 2.4000 144.00 44.44 0.090 0.0286 2.6000 156.00 44.42 0.070 0.0222 2.8000 168.00 44.42 0.070 0.0222					
0.9833 59.00 44.67 0.320 0.1016 1.0000 60.00 44.66 0.310 0.0984 1.2000 72.00 44.58 0.230 0.0730 1.4000 84.00 44.54 0.190 0.0603 1.6000 96.00 44.51 0.160 0.0508 1.8000 108.00 44.48 0.130 0.0413 2.0000 120.00 44.46 0.110 0.0349 2.2000 132.00 44.45 0.100 0.0317 2.4000 144.00 44.44 0.090 0.0286 2.6000 156.00 44.42 0.070 0.0222 2.8000 168.00 44.42 0.070 0.0222					
1.0000 60.00 44.66 0.310 0.0984 1.2000 72.00 44.58 0.230 0.0730 1.4000 84.00 44.54 0.190 0.0603 1.6000 96.00 44.51 0.160 0.0508 1.8000 108.00 44.48 0.130 0.0413 2.0000 120.00 44.46 0.110 0.0349 2.2000 132.00 44.45 0.100 0.0317 2.4000 144.00 44.44 0.090 0.0286 2.6000 156.00 44.42 0.070 0.0222 2.8000 168.00 44.42 0.070 0.0222					
1.2000 72.00 44.58 0.230 0.0730 1.4000 84.00 44.54 0.190 0.0603 1.6000 96.00 44.51 0.160 0.0508 1.8000 108.00 44.48 0.130 0.0413 2.0000 120.00 44.46 0.110 0.0349 2.2000 132.00 44.45 0.100 0.0317 2.4000 144.00 44.44 0.090 0.0286 2.6000 156.00 44.42 0.070 0.0222 2.8000 168.00 44.42 0.070 0.0222					
1.4000 84.00 44.54 0.190 0.0603 1.6000 96.00 44.51 0.160 0.0508 1.8000 108.00 44.48 0.130 0.0413 2.0000 120.00 44.46 0.110 0.0349 2.2000 132.00 44.45 0.100 0.0317 2.4000 144.00 44.44 0.090 0.0286 2.6000 156.00 44.42 0.070 0.0222 2.8000 168.00 44.42 0.070 0.0222					
1.6000 96.00 44.51 0.160 0.0508 1.8000 108.00 44.48 0.130 0.0413 2.0000 120.00 44.46 0.110 0.0349 2.2000 132.00 44.45 0.100 0.0317 2.4000 144.00 44.44 0.090 0.0286 2.6000 156.00 44.42 0.070 0.0222 2.8000 168.00 44.42 0.070 0.0222					
1.8000 108.00 44.48 0.130 0.0413 2.0000 120.00 44.46 0.110 0.0349 2.2000 132.00 44.45 0.100 0.0317 2.4000 144.00 44.44 0.090 0.0286 2.6000 156.00 44.42 0.070 0.0222 2.8000 168.00 44.42 0.070 0.0222					
2.0000 120.00 44.46 0.110 0.0349 2.2000 132.00 44.45 0.100 0.0317 2.4000 144.00 44.44 0.090 0.0286 2.6000 156.00 44.42 0.070 0.0222 2.8000 168.00 44.42 0.070 0.0222					
2.2000 132.00 44.45 0.100 0.0317 2.4000 144.00 44.44 0.090 0.0286 2.6000 156.00 44.42 0.070 0.0222 2.8000 168.00 44.42 0.070 0.0222					
2.4000 144.00 44.44 0.090 0.0286 2.6000 156.00 44.42 0.070 0.0222 2.8000 168.00 44.42 0.070 0.0222					
2.6000 156.00 44.42 0.070 0.0222 2.8000 168.00 44.42 0.070 0.0222					
2.8000 168.00 44.42 0.070 0.0222					

SLUG TEST DATA - WELL MW-12 (continued)

Time (min)	Time (sec)	Elevation (feet)	Change (h)	Head Ratio (h/h ₀)
3.2000	192.00	44.40	0.050	0.0159
3.4000	204.00	44.40	0.050	0.0159
3.6000	216.00	44.40	0.050	0.0159
3.8000	228.00	44.39	0.040	0.0127
4.0000	240.00	44.39	0.040	0.0127
4.2000	252.00	44.39	0.040	0.0127
4,4000	264.00	44.39	0.040	0.0127
4.6000	276.00	44.38	0.030	0.0095
4.8000	288.00	44.38	0.030	0.0095
5.0000	300.00	44.38	0.030	0.0095
5.2000	312.00	44.37	0.020	0.0064
5.4000	324.00	44.37	0.020	0.0064
5.6000	336.00	44,37	0.020	0.0064
5.8000	348.00	44.37	0.020	0.0064
6.0000	360.00	44.37	0.020	0.0064
6.2000	372.00	44.37	0.020	0.0064
6,4000	384.00	44.37	0.020	0.0064
6.6000	396.00	44.36	0.010	0.0032
6.8000	408.00	44.36	0.010	0.0032
7.0000	420.00	44.36	0.010	0.0032
7.2000	432.00	44.36	0.010	0.0032
7.4000	444.00	44.36	0.010	0.0032
7.6000	456.00	44.36	0.010	0.0032
7.8000	468.00	44.36	0.010	0.0032
8.0000	480.00	44.35	0.000	0.0000

Time	Time	Elevation	Change	Head Ratio
(min)	(sec)	(feet)	(h)	(h/h ₀)
0.0000	0.00	16.51	2.070	1.0000
0.0000	0.00	46.51	2.070	1.0000
0.0083	0.50	46.51	2.070	1.0000
0.0166	1.00	46.45	2.010	0.9710
0.0250	1.50	46.40	1.960	0.9469
0.0333	2.00	46.35	1.910	0.9227
0.0416	2.50	46.30	1.860	0.8986
0.0500	3.00	46.26	1.820	0.8792
0.0583	3.50	46.22	1.780	0.8599
0.0666	4.00	46.18	1.740	0.8406
0.0750	4.50	46.14	1.700	0.8213
0.0833	5.00	46.10	1.660	0.8019
0.0916	5.50	46.06	1.620	0.7826
0.1000	6.00	46.02	1.580	0.7633
0.1083	6.50	45.99	1.550	0.7488
0.1166	7.00	45.96	1.520	0.7343
0.1250	7.50	45.93	1.490	0.7198
0.1333	8.00	45.90	1.460	0.7053
0.1416	8.50	45.86	1.420	0.6860
0.1500	9.00	45.84	1.400	0.6763
0.1583	9.50	45.81	1.370	0.6618
0.1666	10.00	45.78	1.340	0.6473
0.1750	10.50	45.76	1.320	0.6377
0.1833	11.00	45.72	1.280	0.6184
0.1916	11.50	45.70	1.260	0.6087
0.2000	12.00	45.68	1.240	0.5990
0.2083	12.50	45.66	1.220	0.5894
0.2166	13.00	45.63	1.190	0.5749
0.2250	13.50	45.61	1.170	0.5652
0.2333	14.00	45.59	1.150	0.5556
0.2416	14.50	45.57	1.130	0.5459
0.2500	15.00	45.54	1.100	0.5314
0.2583	15.50	45.52	1.080	0.5217
0.2666	16.00	45.50	1.060	0.5121
0.2750	16.50	45.48	1.040	0.5024
0.2833	17.00	45.46	1.020	0.4928
0.2916	17.50	45.45	1.010	0.4879
0.3000	18.00	45.43	0.990	0.4783
0.3083	18.50	45.41	0.970	0.4686
0.3166	19.00	45.39	0.950	0.4589
0.3250	19.50	45.38	0.940	0.4541
0.3333	20.00	45.36	0.920	0.4444
0.3500	21.00	45.33	0.890	0.4300
0.3666	22.00	45.30	0.860	0.4155
0.3833	23.00	45.27	0.830	0.4010
0.4000	24.00	45.24	0.800	0.3865
0.4166	25.00	45.22	0.780	0.3768

SLUG TEST DATA - WELL MW-13 (continued)

Time (min)	Time (sec)	Elevation (feet)	Change (h)	Head Ratio (h/h ₀)
	XXXI.	1-220	1217	
0.4333	26.00	45.19	0.750	0.3623
0.4500	27.00	45.17	0.730	0.3527
0.4666	28.00	45.15	0.710	0.3430
0.4833	29.00	45.13	0.690	0.3333
0.5000	30.00	45.10	0.660	0.3188
0.5166	31.00	45.08	0.640	0.3092
0.5333	32.00	45.06	0.620	0.2995
0.5500	33.00	45.05	0.610	0.2947
0.5666	34.00	45.03	0.590	0.2850
0.5833	35.00	45.01	0.570	0.2754
0.6000	36.00	44.99	0.550	0.2657
0.6166	37.00	44.98	0.540	0.2609
0.6333	38.00	44.96	0.520	0.2512
0.6500	39.00	44.95	0.510	0.2464
0.6666	40.00	44,94	0.500	0.2415
0.6833	41.00	44.93	0.490	0.2367
0.7000	42.00	44.91	0.470	0.2271
0.7166	43.00	44.90	0.460	0.2222
0.7333	44.00	44.89	0.450	0.2174
0.7500	45.00	44.87	0.430	0.2077
0.7666	46.00	44.86	0.420	0.2029
0.7833	47.00	44.86	0.420	0.2029
0.8000	48.00	44.84	0.400	0.1932
0.8166	49.00	44.83	0.390	0.1884
0.8333	50.00	44.82	0.380	0.1836
0.8500	51.00	44.82	0.380	0.1836
0.8666	52.00	44.80	0.360	0.1739
0.8833	53.00	44.80	0.360	0.1739
0.9000	54.00	44.79	0.350	0.1691
0.9166	55.00	44.78	0.340	0.1643
0.9333	56.00	44.77	0.330	0.1594
0.9500	57.00	44.76	0.320	0.1546
0.9666	58.00	44.75	0.310	0.1498
0.9833	59.00	44.75	0.310	0.1498
1.0000	60.00	44.74	0.300	0.1449
1.2000	72.00	44.67	0.230	0.1111
1.4000	84.00	44.62	0.180	0.0870
1.6000	96.00	44.58	0.140	0.0676
1.8000	108.00	44.56	0.120	0.0580
2.0000	120.00	44.54	0.100	0.0483
2.2000	132.00	44.52	0.080	0.0386
2.4000	144.00	44.51	0.070	0.0338
2.6000	156.00	44.49	0.050	0.0242
2.8000	168.00	44.49	0.050	0.0242
3.0000	180.00	44.48	0.040	0.0193

SLUG TEST DATA - WELL MW-13 (continued)

Time (min)	Time (sec)	Elevation (feet)	Change (h)	Head Ratio (h/h ₀)
3.2000	192.00	44.47	0.030	0.0145
3.4000	204.00	44.47	0.030	0.0145
3.6000	216.00	44.46	0.020	0.0097
3.8000	228.00	44.46	0.020	0.0097
4.0000	240.00	44.46	0.020	0.0097
4.2000	252.00	44.46	0.020	0.0097
4.4000	264.00	44.46	0.020	0.0097
4.6000	276.00	44.46	0.020	0.0097
4.8000	288.00	44.45	0.010	0.0048
5.0000	300.00	44.45	0.010	0.0048
5.2000	312.00	44.45	0.010	0.0048
5.4000	324.00	44.45	0.010	0.0048
5.6000	336.00	44.45	0.010	0.0048
5.8000	348.00	44.44	0.000	0.0000